NCJ Number
249283
Journal
Applied Spectroscopy Volume: 69 Issue: 6 Dated: June 2015 Pages: 773-748
Date Published
June 2015
Length
16 pages
Annotation
Derivatives are common preprocessing tools, typically implemented as Savitzky-Golay (SG) smoothing derivatives. This article discusses the implementation and optimization of fourth-order gap derivatives (GDs) as an alternative to SG derivatives for processing infrared spectra before multivariate calibration.
Abstract
Gap derivatives approximate the analytical derivative by calculating finite differences of spectra without curve fitting. Gap derivatives offer an advantage of tunability for spectral data, as the distance (gap) over which this finite difference is calculated can be varied. Gap selection is a compromise between signal attenuation, noise amplification, and spectral resolution. A method and discussion of the importance of fourth derivative gap selections are presented as well as a comparison to SG preprocessing and lower-order GDs in the context of multivariate calibration. In most cases, the study found that optimized GDs led to calibration models performing comparably to or better than SG derivatives, and that optimized fourth-order GDs behaved similarly to matched filters. (Publisher abstract modified)
Date Published: June 1, 2015
Downloads
Similar Publications
- Analyzing and interpreting deoxyribonucleic acid from multiple donors using a forensically relevant single-cell strategy
- In Vitro Structure-activity Relationships and Forensic Case Series of Emerging 2-benzylbenzimidazole 'Nitazene' Opioids
- Enhanced Sensitivity and Homogeneity of SERS Signals on Plasmonic Substrate When Coupled to Paper Spray Ionization-Mass Spectrometry