U.S. flag

An official website of the United States government, Department of Justice.

Covalent Surface Modification of Ti3C2Tx MXene with Chemically Active Polymeric Ligands Producing Highly Conductive and Ordered Microstructure Films

NCJ Number
304330
Journal
Acs Applied Nano Materials
Date Published
March 2022
Annotation

This article reports a chemically important surface modification approach in which “solvent-like” polymers, polyethylene glycol carboxylic acid (PEG6-COOH), are covalently attached onto MXenes via esterification chemistry.

Abstract

As interest continues to grow in Ti3C2Tx and other related MXenes, advancement in methods of manipulation of their surface functional groups beyond synthesis-based surface terminations (Tx: −F, −OH, and ═O) can provide mechanisms to enhance solution processability as well as produce improved solid-state device architectures and coatings. The current article notes that surface modification of Ti3C2Tx with PEG6-COOH with large ligand loading (up to 14% by mass) greatly enhances dispersibility in a wide range of nonpolar organic solvents (e.g., 2.88 mg/mL in chloroform) without oxidation of Ti3C2Tx two-dimensional flakes or changes in the structure ordering. Furthermore, cooperative interactions between polymer chains improve the nanoscale assembly of uniform microstructures of stacked MXene-PEG6 flakes into ordered thin films with excellent electrical conductivity (∼16,200 S·cm–1). Most importantly, our covalent surface modification approach with ω-functionalized PEG6 ligands (ω-PEG6-COOH, where ω: −NH2, −N3, −CH═CH2) allows for control over the degree of functionalization (incorporation of valency) of MXene. The authors believe that installing valency onto MXenes through short, ion conducting PEG ligands without compromising MXenes’ features such as solution processability, structural stability, and electrical conductivity further enhance MXenes surface chemistry tunability and performance and widens their applications. (Publisher Abstract)

Date Published: March 10, 2022