This article reports on the characterization and optimization of a rapid, automated 3D-printed cone spray ionization-mass spectrometry (3D-PCSI-MS) methodology.
3D-printed cone spray ionization-mass spectrometry (3D-PCSI-MS) is an ambient ionization technique developed for the rapid, in-situ analysis of bulk solids and trace analytes within solid matrices. A reproducibly fabricated 3D-printed cone is used as the collection device, the extraction chamber, and the spray-based ionization source. Herein, we discuss the material selection based on the extraction and spray solvent compatibility with conductive plastic types, the strength of the selected material, and the advantages and disadvantages of the cone geometry. The ease of printing and the required parameters for reproducible manufacturing is also documented. To allow for improved sample throughput, reproducible positioning, and automated solvent delivery and analysis, an autosampler was developed from commercial-off-the-shelf (COTS) parts and custom 3D-printed pieces. Finally, the application of this automated sampling via 3D-PCSI-MS on a field portable mass spectrometer was demonstrated for environmental, defense, and forensic applications. (Publisher Abstract Provided)
Downloads
Similar Publications
- Linking Ammonium Nitrate – Aluminum (AN-AL) Post-Blast Residues to PreBlast Explosive Materials Using Isotope Ratio and Trace Elemental Analysis for Source Attribution
- The Study of Tissue-Specific DNA Methylation as a Method for the Epigenetic Discrimination of Forensic Samples
- Raman Spectroscopy and Chemometrics for Forensic Bloodstain Analysis: Species Differentiation, Donor Age Estimation, and Dating of Bloodstains