This study examined the impact of long-range- dependent (LRD) data traffic on the statistical characteristics of multi-access interference (MAI) and signal to interreference-plus-noise ratio (SINR) in a code division multiple access (CDMA) network.
As more and more wireless subscribers access the Internet through cellular networks, Internet data traffic, which is known to be long range dependent (LRD), will soon dominate the conventional voice traffic. Through analysis and simulation, the authors show that that the time-scaled MAI and SINR have slow decaying tail distributions due to the LRD data traffic. As a result, the outage probability is larger for data users than that for voice users. To improve the performance of the CDMA network in the presence of LRD data traffic, the authors propose a variable period prediction scheme to predict MAI or the equivalent number of active users. They show that the proposed variable period prediction is not only more accurate for data users but also less memory-consuming than existing fixed period prediction. In addition, rate control based on variable period prediction can achieve lower outage probability and higher throughput for data users than that based on fixed period prediction. (Published abstract provided)
Similar Publications
- Assessing Screw Length Impact on Bone Strain in Proximal Humerus Fracture Fixation Via Surrogate Modelling
- The Effects of Community-infused Problem-oriented Policing in Crime Hot Spots Based on Police Data: A Randomized Controlled Trial
- The Impact of Individualized Focused Deterrence on Criminal and Prosocial Outcomes