Since massively parallel sequencing (MPS) is an emerging technology in the field of forensic genetics that provides distinct advantages compared to capillary electrophoresis, the current study provides a proof of concept that MPS technologies can be applied to genotype autosomal STRs in Cannabis sativa.
A custom panel for MPS was designed to interrogate 12 cannabis-specific STR loci by sequence rather than size. A simple workflow was implemented to integrate the custom PCR multiplex into a workflow compatible with the Ion Plus Fragment Library Kit, Ion Chef, and Ion S5 System. For data sorting and sequence analysis, a custom configuration file was designed for STRait Razor v3 to parse and extract STR sequence data. This study represents a preliminary investigation of sequence variation for 12 autosomal STR loci in 16 cannabis samples. Full concordance was observed between the MPS and CE data. Results revealed intra-repeat variation in eight loci where the nominal or size-based allele was identical, but variances were discovered in the sequence of the flanking region. Although only a small number of cannabis samples were evaluated, this study demonstrates that more informative STR data can be obtained via MPS. (publisher abstract modified)
Downloads
Similar Publications
- Assessing the value of bacteria, plants, fungi and arthropods characterized via DNA metabarcoding for separation of forensic-like surface soils at varied spatial scales
- Analysis of cannabis plant materials by near-infrared (NIR) spectroscopy and multivariate data analysis for differentiating low-THC and high-THC cannabis
- QCM-based screening of acrylate polymers for NPPA pre-concentration to enhance vapor detection of fentanyl