This paper describes the authors’ development of objective comparison methods to differentiate S. divinorum from other Salvia species, and discusses the advantages and disadvantages for forensic applications.
Salvia divinorum is a hallucinogenic herb that is internationally regulated. In this study, salvinorin A, the active compound in S. divinorum, was extracted from S. divinorum plant leaves using a 5-min extraction with dichloromethane. Four additional Salvia species (Salvia officinalis, Salvia guaranitica, Salvia splendens, and Salvia nemorosa) were extracted using this procedure, and all extracts were analyzed by gas chromatography–mass spectrometry. Differentiation of S. divinorum from other Salvia species was successful based on visual assessment of the resulting chromatograms. To provide a more objective comparison, the total ion chromatograms (TICs) were subjected to principal components analysis (PCA). Prior to PCA, the TICs were subjected to a series of data pretreatment procedures to minimize non-chemical sources of variance in the data set. Successful discrimination of S. divinorum from the other four Salvia species was possible based on visual assessment of the PCA scores plot. To provide a numerical assessment of the discrimination, a series of statistical procedures such as Euclidean distance measurement, hierarchical cluster analysis, Student’s t tests, Wilcoxon rank-sum tests, and Pearson product moment correlation were also applied to the PCA scores. The statistical procedures were then compared to determine the advantages and disadvantages for forensic applications. (Published Abstract Provided)
Downloads
Similar Publications
- Discrimination Between Human and Animal Blood Using Raman Spectroscopy and a Self-Reference Algorithm for Forensic Purposes: Method Expansion and Validation
- Large-scale Selection of Highly Informative Microhaplotypes for Ancestry Inference and Population Specific Informativeness
- Recovery and Detection of Ignitable Liquid Residues from the Substrates by Solid Phase Microextraction – Direct Analysis in Real Time Mass Spectrometry