This article reports on an investigation of the probability of adventitious matches in forensic DNA database searches, given the effect of wild card designations and rare alleles.
Forensic DNA databases are powerful tools used for the identification of persons of interest in criminal investigations. Typically, they consist of two parts: (1) a database containing DNA profiles of known individuals and (2) a database of DNA profiles associated with crime scenes. The risk of adventitious or chance matches between crimes and innocent people increases as the number of profiles within a database grows and more data is shared between various forensic DNA databases, e.g. from different jurisdictions. The DNA profiles obtained from crime scenes are often partial because crime samples may be compromised in quantity or quality. When an individual's profile cannot be resolved from a DNA mixture, ambiguity is introduced. A wild card, F, may be used in place of an allele that has dropped out or when an ambiguous profile is resolved from a DNA mixture. Variant alleles that do not correspond to any marker in the allelic ladder or appear above or below the extent of the allelic ladder range are assigned the allele designation R for rare allele. R alleles are position specific with respect to the observed/unambiguous allele. The F and R designations are made when the exact genotype has not been determined. The F and R designation are treated as wild cards for searching, which results in increased chance of adventitious matches. The current study investigated the probability of adventitious matches given these two types of wild cards. (publisher abstract modified)
Downloads
Similar Publications
- Enhancing Fault Ride-Through Capacity of DFIG-Based WPs by Adaptive Backstepping Command Using Parametric Estimation in Non-Linear Forward Power Controller Design
- Enhanced Sensitivity and Homogeneity of SERS Signals on Plasmonic Substrate When Coupled to Paper Spray Ionization-Mass Spectrometry
- High-throughput LC-PDA Method for Determination of Δ9-THC and Related Cannabinoids in Cannabis Sativa