After every interval of a 3-month period, 10 fibers were uniformly sampled from each cloth piece, and fluorescence microscopy was used to collect two-dimensional excitation and fluorescence spectra (2-D spectra) and three-dimensional (3D) excitation-emission matrices (EEMs). A significant loss of fluorescence intensity was observed upon fiber exposure to outdoor weathering conditions. For a comprehensive statistical data analysis and to be able to discriminate between any two single fibers weathered under different conditions, a multiway calibration algorithm known as discriminant unfolded partial least-squares (DU-PLS) method was applied to the exposed fibers. Results indicate that fluorescence spectroscopy combined with DU-PLS has the ability to appropriately classify and differentiate between any two pairs of dyed cotton or nylon fibers (acrylic in some cases) exposed to dry versus humid weather environments under different time intervals of exposure. These results provide the foundation for future studies that can contribute to a non-destructive approach capable of providing information on the weathering history of the fiber. (publisher abstract modified)
Downloads
Similar Publications
- High-throughput LC-PDA Method for Determination of Δ9-THC and Related Cannabinoids in Cannabis Sativa
- Calibration of Dual Resolution Dual Camera Structured Light Systems
- Extinction Training Suppresses Activity of Fear Memory Ensembles across the Hippocampus and Alters Transcriptomes of Fear-encoding Cells