NCJ Number
249132
Date Published
April 2012
Length
7 pages
Annotation
This article describes the features of a novel antenna reconfiguration mechanism based on the displacement of liquid metal sections.
Abstract
The liquid nature of the moving parts of the antenna avoids the main disadvantage of mechanically actuated reconfigurable antennas, which is the mechanical failure of their solid parts due to material fatigue, creep, or wear. Furthermore, the displacement of liquid elements can be more effectively performed than in the case of solid materials by applying precise microfluidic techniques, such as continuous-flow pumping or electrowetting. The reconfiguration mechanism is demonstrated through the design, fabrication and measurement of a radiation pattern reconfigurable antenna. This antenna operates at 1800 MHz with 4.0 percent bandwidth and is capable of performing beam-steering over a 360 degrees range with fine tuning. The antenna is a novel circular Yagi-Uda array, where the movable parasitic director and reflector elements are implemented by liquid metal mercury (Hg). The parasitics are placed and rotated in a circular microfluidic channel around the driven element by means of a flow generated and controlled by a piezoelectric micropump. The measured results demonstrated good performance and the applicability of the microfluidic system. (Publisher abstract modified)
Date Published: April 1, 2012
Downloads
Similar Publications
- Optimizing the Use of Video Technology to Improve Criminal Justice Outcomes
- Investigation of Falsified Documents via Direct Analyte-Probed Nanoextraction Coupled to Nanospray Mass Spectrometry, Fluorescence Microscopy, and Raman Spectroscopy
- An Analysis of Single and Multi-Copy Methods for DNA Analysis by Real-Time Polymerase Chain Reaction