To determine how infant and low-height fall characteristics influence fracture patterns, we collected data from 231 head CT 3D reconstructions and quantified length and nonlinearity using a custom image processing code. Regression analysis was used to determine the effects of age and fall characteristics on nonlinearity, length, and features of fracture complexity.
Although impact surface had an important role in the number of cracks present in a fracture, younger infants and greater fall heights significantly affected most features of fracture complexity, including suture-to-suture spanning and biparietal involvement. In addition, increasing fracture length with increasing fall height supports trends identified by prior finite-element modeling. Finally, this study yielded results supporting the presence of soft tissue swelling as a function of fracture location rather than impact site. Age-related properties of the infant skull confer unique fracture patterns following head impact. Further characterization of these properties, particularly in infants <4 months of age, will improve our understanding of the infant skull’s response to trauma. (Publisher abstract provided)
Downloads
Similar Publications
- Estimation of Population-specific Values of Theta for PowerPlex Y23 Profiles
- Physical and Biochemical Factors Affecting the Recovery and Analysis of DNA from Human Skeletal Remains
- Utilizing Derivatizing Agents for the Differentiation of Cannabinoid isomers in Complex Food, Beverage and Personal-care Product Matrices by Ambient Ionization Mass Spectrometry