To determine how infant and low-height fall characteristics influence fracture patterns, we collected data from 231 head CT 3D reconstructions and quantified length and nonlinearity using a custom image processing code. Regression analysis was used to determine the effects of age and fall characteristics on nonlinearity, length, and features of fracture complexity.
Although impact surface had an important role in the number of cracks present in a fracture, younger infants and greater fall heights significantly affected most features of fracture complexity, including suture-to-suture spanning and biparietal involvement. In addition, increasing fracture length with increasing fall height supports trends identified by prior finite-element modeling. Finally, this study yielded results supporting the presence of soft tissue swelling as a function of fracture location rather than impact site. Age-related properties of the infant skull confer unique fracture patterns following head impact. Further characterization of these properties, particularly in infants <4 months of age, will improve our understanding of the infant skull’s response to trauma. (Publisher abstract provided)
Downloads
Similar Publications
- Longitudinal Examination of the Bullying-Sexual Violence Pathway Across Early to Late Adolescence: Implicating Homophobic Name-Calling
- Lay understanding of forensic statistics: Evaluation of random match probabilities, likelihood ratios, and verbal equivalents.
- Testing Reliability of the Computational Age-At-Death Estimation Methods between Five Observers Using Three-Dimensional Image Data of the Pubic Symphysis