U.S. flag

An official website of the United States government, Department of Justice.

Dot gov

The .gov means it’s official.
Federal government websites always use a .gov or .mil domain. Before sharing sensitive information online, make sure you’re on a .gov or .mil site by inspecting your browser’s address (or “location”) bar.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Development and Evaluation of miRNA Panels for Body Fluid Identification Using Capillary Electrophoresis and Massively Parallel Sequencing Methods

Award Information

Award #
2016-DN-BX-0001
Location
Awardee County
Walker
Congressional District
Status
Open
Funding First Awarded
2016
Total funding (to date)
$147,161

Description of original award (Fiscal Year 2016, $47,186)

As submitted by the proposer: The ability to determine the body fluid of origin may be relevant to the course of forensic investigations, particularly in sexual assault cases. Although DNA typing can identify the individual that deposited a stain, current methods cannot conclusively determine whether the sample was due to saliva, vaginal material, semen, venous or menstrual blood. This determination may be critical in the reconstruction of events. This project will provide information regarding the utility of micro RNA (miRNA) analysis for body fluid identification (BFID) by evaluating the stability and persistence of miRNAs in forensically relevant samples. In addition, this study will provide crime laboratories with the ability to distinguish venous blood, menstrual blood, semen, vaginal material, and saliva using current capillary electrophoresis (CE)-based methods already employed in crime laboratories, or with a novel STR/BFID panel via massive parallel sequencing (MPS) technologies. The DNA/RNA co-extraction method allows for the co-analysis of DNA and BFID from a single sample, providing more information from each limited sample. This study will be divided into 3 phases and conducted over 36 months; 1) Develop a ten-marker multiplex miRNA system for the identification of venous blood, menstrual blood, semen, vaginal material, and saliva using CE methods, 2) Develop a miRNA panel for combined STR/BFID analysis using MPS technologies, and 3) Evaluating the stability and persistence of both miRNA systems in forensically challenging conditions. Conditions will include a refrigerated environment, outdoors with and without protection from the rain, buried in soil, clothing on a decomposing cadaver, and in a temperature and humidity controlled environment. Expected scholarly products will include a doctoral dissertation, at least two publications in high-impact factor journals, and presentations of data at national scientific meetings.

Note: This project contains a research and/or development component, as defined in applicable law.
ca/ncf

As submitted by the proposer: The ability to determine the body fluid of origin may be highly relevant in the course of forensic investigations, particularly of sexual assault cases.

Although DNA typing can identify the individual that deposited a stain, current methods cannot conclusively determine whether the sample was due to saliva, vaginal material, semen from an oligo- or azoospermic individual, or distinguish between venous and menstrual blood. This determination may be critical in the reconstruction of events.

This project will provide information regarding the validity of micro RNA (miRNA) analysis for body fluid identification (BFID) by evaluating the stability and persistence of miRNAs in forensically relevant samples. A direct comparison of the stability of miRNA and messenger RNA (mRNA) over a period of 6 months will be performed. In addition, this study will provide crime laboratories with the ability to distinguish venous blood, menstrual blood, semen, and saliva using current capillary electrophoresis (CE)-based methods already employed in crime laboratories.

The DNA/RNA co-extraction method allows for the co-analysis of DNA and BFID, providing more information from a single sample. This study will be divided into 3 phases and conducted over 36 months; 1) Develop a nine-marker multiplex mi RNA system for the identification of venous blood, menstrual blood, semen, and saliva using CE. 2) Evaluate the stability and persistence of mi RNA compared to mRNA. 3) Evaluating the stability and persistence of miRNAs in forensically challenging conditions. Conditions will include a refrigerated environment, outdoors with and without protection from the rain, buried in soil, clothing on a decomposing cadaver, and in a temperature and humidity controlled environment. Stability will be evaluated using both CE and MPS technologies.

Expected scholarly products will include a final technical report, publications in high-impact factor journals and presentation of data at scientific meetings.

This project contains a research and/or development component, as defined in the applicable law, and complies with Part 200 Uniform Requirements – 2 CFR 200.210(a) (14). nca/ncf

The applicant proposes to examine the potential of micro RNA analysis to differentiate between types of body fluid for forensic investigations. "Note: This project contains a research and/or development component, as defined in applicable law," and complies with Part 200 Uniform Requirements - 2 CFR 200.210(a)(14). nca/ncf

Date Created: August 1, 2016