The project identified a number of mRNA transcripts in blood, semen, saliva, vaginal secretions, and teeth that undergo degradation during storage. The degradation profiles of transcripts can vary, creating an opportunity for the correlation of degradation rates with sample age. The first half of this project was spent developing transcript "databases" that were composed of degradation profiles of thousands of transcripts, with some common to all or subgroups of body fluid types, or transcripts restricted to individual body fluids or tissues. This data was produced with RNA sequencing (RNA-seq) on an Ion Torrent PGM platform, using a method that enables individual transcripts to be quantified. These experiments not only revealed the overall characteristics of mRNA degradation in dried stains, but also enabled the identification of individual transcripts whose degradation kinetics with time in storage suggested the feasibility of using RNA degradation as a measure of elapsed time. Researchers used the information obtained from the RNA-seq studies to examine the degradation of specific mRNA transcripts using qPCR. The annual report filed in December 2016 summarizes progress in developing qPCR technology that would reliably estimate the age of dried semen and bloodstains. Future research will examine the effects of the environment on this process. 3 figures, 3 tables, and 5 references
Downloads
Similar Publications
- Quantitative Analysis of Δ9-tetrahydrocannabinol (Δ9-THC) in Cannabis Plants Using the Fast Blue BB (FBBB) and 4-aminophenol (4-AP) Colorimetric Tests
- mtDNA-based Identification of Lucilia Cuprina (Wiedemann) and Lucilia Sericata (Meigen) (Diptera: Calliphoridae) in the Continental United States
- Reducing Gun Violence Through Integrated Forensic Evidence Collection, Analysis, and Sharing