U.S. flag

An official website of the United States government, Department of Justice.

Dot gov

The .gov means it’s official.
Federal government websites always use a .gov or .mil domain. Before sharing sensitive information online, make sure you’re on a .gov or .mil site by inspecting your browser’s address (or “location”) bar.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Thermolytic Degradation of Synthetic Cannabinoids: Chemical Exposures and Pharmacological Consequences

NCJ Number
252424
Date Published
Author(s)
Brian F. Thomas, Timothy W. Lefever, Ricardo A. Cortes, Megan Grabenauer, Alexander L. Kovach, Anderson O. Cox, Purvi R. Patel, Gerald R. Pollard, Julie A. Manusich, Richard C. Kevin, Thomas F. Gamage, Jenny L. Wiley
Annotation
This study determined that heating synthetic cannabinoids containing tetramethylcyclopropyl-ring substituents produced thermal degradants with pharmacological activity that varied considerably from their parent compounds, and these degradants were formed under conditions simulating smoking.
Abstract
Synthetic cannabinoids are manufactured clandestinely with little quality control and are distributed as herbal spice for smoking or as bulk compound for mixing with a solvent and inhalation via electronic vaporizers. Intoxication with synthetic cannabinoids has been associated with seizure, excited delirium, coma, kidney damage, and other disorders. The chemical alterations produced by heating these structurally novel compounds for consumption are largely unknown. The current study found that some products of combustion retained high affinity, were more efficacious, and were potent in laboratory animals; whereas, other compounds had low affinity and efficacy and were devoid of cannabimimetic activity. Degradants that retained affinity and efficacy also substituted in drug discrimination tests for the prototypical synthetic cannabinoid 1-pentyl-3-(1-naphthoyl)indole (JWH-018), and are likely to produce psychotropic effects in humans. Hence, it is important to take into consideration the actual chemical exposures that occur during use of synthetic cannabinoid formulations to better comprehend the relationships between dose and effect. (Publisher abstract modified)
Date Created: December 1, 2019