This article reports on the development of microfluidic paper-based analytical devices (μPADs) for rapid, on-site detection of improvised explosives.
Five lane μPADs were designed and printed using wax ink on chromatography paper to create hydrophobic channels. Each channel contains colorimetric reagents capable of reacting with one or more explosive compounds resulting in a specific colorimetric reaction. Two devices were prepared, each capable of performing five simultaneous analyses on a single μPAD. The first μPAD was developed to detect inorganic explosives such as black powder, flash powder, and ammonium nitrate. It detects nitrate, nitrite, chlorate, and perchlorate oxidizers, as well as ammonium. The second μPAD was developed to detect military explosives such as TNT and RDX along with other high explosives like urea nitrate. It also detects organic peroxides such as TATP and its precursor hydrogen peroxide. All experiments were performed by dissolving the explosives in deionized water or 50 : 50 acetone/H2O as transport solvents with a detection time of around 5 minutes. Detection limits ranged from 0.39–19.8 μg of explosive compound. These two customized μPAD devices permit the on-site forensic testing of unknown explosives, thereby supplying law enforcement and military personnel with a resource for fast, easy detection of military, commercial, and homemade explosive components at low cost. (publisher abstract modified)
Downloads
Similar Publications
- Utilizing Derivatizing Agents for the Differentiation of Cannabinoid isomers in Complex Food, Beverage and Personal-care Product Matrices by Ambient Ionization Mass Spectrometry
- Dyed Hair and Swimming Pools: The Influence of Chlorinated and Nonchlorinated Agitated Water on Surface-Enhanced Raman Spectroscopic Analysis of Artificial Dyes on Hair
- Learning from Our Casework: The Forensic Anthropology Database for Assessing Methods Accuracy