The use of single nucleotide polymorphisms (SNPs) in forensic genetics has been limited to challenged samples with low template and/or degraded DNA. The recent introduction of massively parallel sequencing (MPS) technologies has expanded the potential applications of these markers and increased the discrimination power of well-established loci by considering variation in the flanking regions of target loci. The ForenSeq Signature Preparation Kit contains 165 SNP amplicons for ancestry- (aiSNPs), identity- (iiSNPs), and phenotype-inference (piSNPs). The current study found that nearly 70 percent of loci showed some level of flanking region variation with 22 iiSNPs and 8 aiSNPs categorized as microhaplotypes in this study. The heterozygosities of these microhaplotypes approached, and in one instance surpassed, those of some core STR loci. Also, the impact of the flanking region on other forensic parameters (e.g., power of exclusion and power of discrimination) was examined. Sixteen of the 94 iiSNPs had an effective allele number greater than 2.00 across the four populations. To assess what effect the flanking region information had on the ancestry inference, genotype probabilities and likelihood ratios were determined. In addition, concordance with the ForenSeq UAS and Nextera Rapid Capture was evaluated, and patterns of heterozygote imbalance were identified. Pairwise comparison of the iiSNP diplotypes determined the probability of detecting a mixture (i.e., observing less than or equal to 3 haplotypes) using these loci alone was 0.9952. The improvement in random match probabilities for the full regions over the target iiSNPs was found to be significant. When combining the iiSNPs with the autosomal STRs, the combined match probabilities ranged from 6.4010 -73 (ASN) to 1.0210 -79 (AFA). (publisher abstract modified)
Downloads
Similar Publications
- Targeted-Ion Mass Spectrometry for the Identification of Forensically Relevant Biological Fluids and Samples from Sexual Assault Evidence
- Post-burn and Post-blast Rapid Detection of Trace and Bulk Energetics by 3D-printed Cone Spray Ionization Mass Spectrometry
- Dyed Hair and Swimming Pools: The Influence of Chlorinated and Nonchlorinated Agitated Water on Surface-Enhanced Raman Spectroscopic Analysis of Artificial Dyes on Hair