U.S. flag

An official website of the United States government, Department of Justice.

A Comprehensive Regression Tree to Estimate Body Weight from the Skeleton

NCJ Number
255366
Journal
Journal of Forensic Sciences Volume: 56 Issue: 5 Dated: 2011 Pages: 1115-1122
Author(s)
Date Published
2011
Length
8 pages
Annotation

The purpose of this research was to estimate actual body weight, particularly obesity, from the human skeleton. 

Abstract

Known individuals (n=187) were studied from the Bass Collection from the University of Tennessee, Knoxville. This research combined bone density, cross-sectional geometry of the femur, and skeletal pathologies. Bone mineral density was calculated for the proximal femur. Three-dimensional bone surface models were created from computed tomographic scans. Cross-sectional geometry of the femur was calculated at five locations along the diaphysis. The pathologies analyzed were heel spurs, diffuse idiopathic skeletal hyperostosis (DISH), and tibial osteoarthritis. The best regression tree model included only four variables. The first split to estimate body weight was the minimum moment of inertia (Iy) at the distal femur; the second was midshaft width, then anteroposterior thickness at the proximal slice; and the final split was the degree of DISH (SD 17.1–31.0 kg). The ability to estimate body weight from the skeleton is one more useful tool for the osteologist. (publisher abstract modified)

Date Published: January 1, 2011