The current project engineered a machine-learning approach, MSHub, to enable auto-deconvolution of gas chromatography–mass spectrometry (GC–MS) data.
It then designed workflows to enable the community to store, process, share, annotate, compare, and perform molecular networking of GC–MS data within the Global Natural Product Social (GNPS) Molecular Networking analysis platform. MSHub/GNPS performs auto-deconvolution of compound fragmentation patterns via unsupervised non-negative matrix factorization and quantifies the reproducibility of fragmentation patterns across samples. (publisher abstract modified)
Downloads
Similar Publications
- Enhanced DNA Profiling of the Semen Donor in Late Reported Sexual Assaults: Use of Y-Chromosome-Targeted Pre-amplification and Next Generation Y-STR Amplification Systems
- A Systematic Study of Liquid Chromatography in Search of the Best Separation of Cannabinoids for Potency Testing of Hemp-Based Products Using Diode Array Detector and Electrospray Ionization Mass Spectrometry
- Clinical characteristics of patients exposed to medetomidine in the illicit opioid drug supply in Philadelphia – a case series