A blind study was conducted to determine whether virtual toolmarks created using a computer could be used to identify and characterize angle of incidence of physical tool marks.
Six sequentially manufactured screwdriver tips and one random screwdriver were used to create toolmarks at various angles. An apparatus controlled tool angle. Resultant toolmarks were randomly coded and sent to the researchers, who scanned both tips and toolmarks using an optical profilometer to obtain 3D topography data. Developed software was used to create virtual marks based on the tool topography data. Virtual marks generated at angles from 30 to 85 degrees (5-degree increments) were compared to physical toolmarks using a statistical algorithm. Twenty of twenty toolmarks were correctly identified by the algorithm. On average, the algorithm misidentified the correct angle of incidence by -6.12 degrees. This study presents the results, their significance, and offers reasons for the average angular misidentification. (Publisher abstract modified)
Downloads
Similar Publications
- Experimental and Numerical Investigation of Gypsum Calcination under Fire Exposure
- Skeletal Trauma in Forensic Anthropology: Improving the Accuracy of Trauma Analysis and Expert Testimony
- Discrimination Between Human and Animal Blood Using Raman Spectroscopy and a Self-Reference Algorithm for Forensic Purposes: Method Expansion and Validation