One of the two main tasks was to measure the transfer of blood from a blood-stained fabric to a fabric that is not stained, so as to determine the underlying physics and chemistry involved. The second main task was to develop the artifical blood with the aforementioned properties. The study found that even for two 100-percent cotton fabrics of the simplest fabric structures and for the simplest bloodstain, the transfer stains had significantly different characteristics from the stain that produced the transfer. It was also determined that the transfer between fabrics occurred only while liquid blood remained on the fabric surface. Once the blood entered the yarn structure, it became difficult for the blood to be transferred to another yarn through pressure. The study also determined that the viscosity profile of the artificial blood substitute closely matched that of porcine blood, and stains created by the artificial blood substitute closely resembled those of porcine blood. The artificial blood substitute is storage-stable at room temperature and should be a safe alternative for use in training and scene re-creation. 7 figures
Downloads
Similar Publications
- Correction: Shelly Y. Shih; et al.; Applications of Probe Capture Enrichment Next Generation Sequencing for Whole Mitochondrial Genome and 426 Nuclear SNPs for Forensically Challenging Samples. Genes 2018, 9, 49
- Sexual Dimorphism in Growth Rate and Gene Expression Throughout Immature Development in Wild Type Chrysomya rufifacies (Diptera: Calliphoridae) Macquart
- Labor Trafficking in Construction and Hospitality Survey Findings: New York