This newsletter brief summarizes an interview with Dr. Ming Su of the Worcester Polytechnic Institute in which he discusses his research on covert metal nanoparticles funded by the U.S. Department of Justice, National Institute of Justice (NIJ).
This newsletter brief summarizes Ryan Tomcik's, the International Association for Identification's NIJ liason, interview with Dr. Ming Su of the Worcester Polytechnic Institute concerning his NIJ-funded research on covert metal nanoparticles and the potential benefits they may provide to crime scene investigators. These covert metal nanoparticles, a class of molecular taggants, are physical or chemical markers, such as microfibers, microscopic labels and security inks, that are currently employed in anti-counterfeiting measures. The analysis of statistically unique taggants in forensic science is a fundamental idea with respect to the interpretation of trace evidence that is collected from crime scenes and, it is Dr. Su's belief, that taggant analysis could potentially become as accurate a measurement as DNA analysis. Dr. Su, a materials science and engineering Ph.D. with experience in nanotechnology and nanomedicine, has evolved his research interest into a new type of nanomaterials. Called phase change materials (PCM), these nanomaterials change their phases from solid to liquid at melting temperatures and could be assembled to form a new type of barcode system that will have extremely high capacity. Dr. Su's project, Encapsulated Phase Change Nanoparticles as Thermally-Readable Covert Taggants, is being funded under NIJ award number 2012-DN-BX-K021.
Downloads
Similar Publications
- Development and Evaluation of a Nontargeted Electrochemical Surface-Enhanced Raman Spectroscopy (EC-SERS) Screening Method Applied to Authentic Forensic Seized Drug Casework Samples
- Testing the Invariance of Warrior and Guardian Orientations on the Prioritization of Procedural Justice: Do Officer Demographics Matter?
- IS2aR, a Computational Tool to Transform Voxelized Reference Phantoms into Patient-specific Whole-body Virtual CTs for Peripheral Dose Estimation