U.S. flag

An official website of the United States government, Department of Justice.

Dot gov

The .gov means it’s official.
Federal government websites always use a .gov or .mil domain. Before sharing sensitive information online, make sure you’re on a .gov or .mil site by inspecting your browser’s address (or “location”) bar.


The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Simple Reagent Storage in Polyester-Paper Hybrid Microdevices for Colorimetric Detection

NCJ Number
Date Published
Shannon T. Krauss, Victoria C. Holt, James P. Landers
This article describes the development of polyester-paper hybrid microfluidic devices that use a fabrication method, compounded from the print, cut, and laminate (PCL) technique, which allows for simple yet effective dry reagent storage for improved use with centrifugal or polymeric-based devices.
A challenge in developing microfluidic devices for fully portable and automated field analyses is the ability to integrate and store reagents in a stable form while maintaining a low cost for the system. Paper-based field-deployable devices are currently the most extensively explored platforms for field use; however, centrifugal devices offer a means for heightened device automation and portability. The basis for many field devices is chemical sensing via colorimetric reactions. The current project used various proof-of-principle colorimetric assays for multiple applications, including the analysis of total protein, serum albumin, cocaine, 2,4,6-trinitrotoluene (TNT), and iron content. Localized reagent integration facilitated by paper punches allowed for both reagent stability prior to reaction for storage, color stability post-reaction for image analysis, and was compatible for multi-step analyses. Qualitative and quantitative results were achieved with the broad range of sample applications trialed here, while still maintaining the ability for downstream processing. (Publisher abstract modified)
Date Created: March 19, 2019