This paper introduces a new library-search algorithm that improves presumptive identifications of mixture components using a series of in-source collision-induced dissociation mass spectra collected through direct analysis in real time mass spectrometry (DART-MS).
The multistage search, titled the Inverted Library-Search Algorithm (ILSA), identifies potential components in a mixture by first searching the lowest fragmentation mass spectrum for target peaks, assuming these peaks are protonated molecules, and then scoring each target peak with possible library matches. As a proof of concept, the ILSA is demonstrated through several example searches of model seized drug mixtures of acetyl fentanyl, benzyl fentanyl, amphetamine, and methamphetamine searched against a small library of select compounds and the freely available NIST DART-MS Forensics Database. Discussion of the search results and several open areas of research to further extend the method are provided. This new approach for presumptive identification provides analysts with refined information about mixture components and will be of immediate importance in forensic analysis using DART-MS. A prototype implementation of the ILSA is available at https://github.com/asm3-nist/DART-MS-DST. (Published abstract provided)
Downloads
Similar Publications
- Commentary on: Alberink I, de Jongh A, Rodriguez C. Fingermark evidence evaluation based on automated fingerprint identification system matching scores: the effect of different types of conditioning on likelihood ratios. J Forensic Sci 2014; 59(1):70–81.
- Employing wavelet-based texture features in ammunition classification
- Interpreting DNA under fingernails given activity level propositions