Overall, the compounds most vulnerable to microbial degradation are the n-alkanes, followed by the mono-substituted alkylbenzenes (e.g., toluene, ethylbenzene, propylbenzene and isopropylbenzene). Benzaldehyde (a degradation product of toluene) was also identified as a marker for the extent of biodegradation. Ultimately, it was determined that soil collected during an unusually hot and dry summer exhibited the least degradation, with little to no change in gasoline for up to 4 days, readily detectable n-alkanes for up to 7 days and relatively high levels of resilient compounds such as o-xylene, p-xylene and 1,3,5-trimethylbenzene. These results demonstrate, however, that prompt preservation and/or analysis of soil evidence is required in order to properly classify an ignitable liquid residue. Soil samples were collected from the same site during fall, winter, spring, and summer; and the degradation of gasoline was monitored over 30 days. Predominant viable bacterial populations enumerated using real-time PCR and reverse transcriptase polymerase chain reaction (RT-PCR) enumeration revealed the predominant viable bacterial genera to be Alcaligenes, Bacillus, and Flavobacterium. (Publisher abstract modified)
Downloads
Similar Publications
- Adolescent Peer Networks and the Moderating Role of Depressive Symptoms on Developmental Trajectories of Cannabis Use
- Online Peers and Delinquency: Distinguishing Influence, Selection, and Receptivity Effects for Offline and Online Peers with Longitudinal Data
- Childhood Maltreatment and Midlife Mortality: A Prospective Investigation