NCJ Number
249395
Date Published
January 2016
Length
11 pages
Annotation
This study explored the impacts of validation design on DNA signal, and the level of variation introduced by injection, capillary changes, amplification, and kit lot was surveyed by examining a set of replicate samples ranging in mass from 0.25 to 0.008 ng.
Abstract
The variations in peak height, heterozygous balance, dropout probabilities, and baseline noise were compared using common statistical techniques. Data indicate that amplification is the source of the majority of the variation observed in the peak heights, followed by capillary lots. The use of different amplification kit lots did not introduce variability into the peak heights, heterozygous balance, dropout, or baseline. Thus, if data from case samples run over a significant time period are not available during validation, the validation must be designed to, at a minimum, include the amplification of multiple samples of varying quantity, with known genotype, amplified and run over an extended period of time using multiple pipettes and capillaries. (Publisher abstract modified)
Date Published: January 1, 2016
Downloads
Similar Publications
- DNA Purification in Microfluidic Systems for Clinical and Forensic Application
- Development and Evaluation of miRNA and mRNA Panels for Body Fluid Identification
- Criticality of Spray Solvent Choice on the Performance of Next Generation, Spray-Based Ambient Mass Spectrometric Ionization Sources: A Case Study Based on Synthetic Cannabinoid Forensic Evidence