U.S. flag

An official website of the United States government, Department of Justice.

Evidential Significance of Automotive Paint Trace Evidence Using a Pattern Recognition Based Infrared Library Search Engine for the Paint Data Query Forensic Database

NCJ Number
252299
Date Published
October 2016
Length
13 pages
Author(s)
Barry K. Lavine, Collin G. White, Matthew D. Allen, Ayuba Fasasi, Andrew Weakley
Agencies
NIJ-Sponsored
Annotation
A prototype library search engine has been further developed to search the infrared spectral libraries of the paint data query database to identify the line and model of a vehicle from the clear coat, surfacer-primer, and e-coat layers of an intact paint chip. For the study described in this article, search prefilters were developed from 1,181 automotive paint systems spanning three manufacturers: General Motors, Chrysler, and Ford.
Abstract
The best match between each unknown and the spectra in the hit list generated by the search prefilters was identified using a cross-correlation library search algorithm that performed both a forward and backward search. In the forward search, spectra were divided into intervals and further subdivided into windows (which corresponds to the time lag for the comparison) within those intervals. The top five hits identified in each search window were compiled; a histogram was computed that summarized the frequency of occurrence for each library sample, with the IR spectra most similar to the unknown flagged. The backward search computed the frequency and occurrence of each line and model without regard to the identity of the individual spectra. Only those lines and models with a frequency of occurrence greater than or equal to 20 percent were included in the final hit list. If there was agreement between the forward and backward search results, the specific line and model common to both hit lists was always the correct assignment. Samples assigned to the same line and model by both searches are always well represented in the library and correlate well on an individual basis to specific library samples. For these samples, one can have confidence in the accuracy of the match. This was not the case for the results obtained using commercial library search algorithms, as the hit quality index scores for the top twenty hits were always greater than 99 percent. (Publisher abstract modified)
Date Created: March 20, 2019