The quantification of elemental impurities in aluminum oxide powder is important due to its large demand for various industrial applications. One of the techniques to perform such analysis is Laser-Induced Breakdown Spectroscopy (LIBS) and to that end, powders are usually pressed into pellets; however, the density of the powder-compact is often not reported and its effect on the analytical figure-of-merit is unknown. The results of the current study indicate that the sensitivity increases when the grain size increases for a given density and that its relative standard deviation decreases with the density of the powder compacts without any grain size effect. These results imply that both the powder-compact density and the ultimate particle size of the powders must be specified in the protocol for building the calibration curve. (publisher abstract modified)
Downloads
Similar Publications
- Introducing the NIJ Forensic Intelligence Framework: Pillars and Guiding Principles for Successful Implementation
- Superhydrophobic Surface Modification of Polymer Microneedles Enables Fabrication of Multimodal Surface-Enhanced Raman Spectroscopy and Mass Spectrometry Substrates for Synthetic Drug Detection in Blood Plasma
- Basecalling Using Hidden Markov Models