NCJ Number
249346
Date Published
January 2015
Length
9 pages
Annotation
This article describes the features of a multifunctional reconfigurable antenna (MRA) capable of operating in nine modes corresponding to nine steerable beam directions in the semisphere space ({-30‹,0‹, 30‹}; ƒÓ ¸ {0‹, 45‹, 90‹, 135‹}).
Abstract
The MRA consists of an aperture-coupled driven patch antenna with a parasitic layer placed above it. The surface of the parasitic layer has a grid of 3 ~ 3 electrically small, square-shaped metallic pixels. The adjacent pixels are connected by PIN diode switches with ON/OFF status to change the geometry of the parasitic surface, which in turn changes the current distribution on the antenna, thus providing reconfigurability in beam steering direction. The MRA operates in the IEEE 802.11 frequency band (2.4-2.5 GHz) in each mode of operation. The antenna has been fabricated and measured. The measured and simulated impedance and radiation pattern results agree well indicating an average of ~ 6.5 dB realized gain in all modes of operation. System-level experimental performance evaluations have also been performed, where an MRA-equipped WLAN platform was tested and characterized in typical indoor environments. The results confirm that the MRA-equipped WLAN systems could achieve an average of 6 dB Signal to Noise Ratio (SNR) gain compared to legacy omni-directional antenna-equipped systems with minimal training overhead. (Publisher abstract modified)
Date Published: January 1, 2015
Downloads
Similar Publications
- The Application of Magnetic Bead Hybridization for the Recovery and STR Amplification of Degraded and Inhibited Forensic DNA
- Just Science Podcast: Just Workplace Stress and Its Impact on Decision-Making in Forensics
- An Evaluation of Victim Centered, Trauma Informed Interview Training for Sexual Assault Investigators using Standardized Patient Actors: A Randomized Controlled Trial