U.S. flag

An official website of the United States government, Department of Justice.

Soil fungal and nematode community changes as a methodology for determining long-term postmortem interval after cadaver mass loss

Award Information

Award #
2017-R2-CX-0008
Funding Category
Competitive Discretionary
Location
Congressional District
Status
Closed
Funding First Awarded
2017
Total funding (to date)
$150,000

Description of original award (Fiscal Year 2017, $50,000)

The determination of the postmortem interval (PMI) is a fundamental necessity in forensic investigation and the accuracy of its assessment is critical. Decomposition is a dynamic process, reliant upon a suite of largely environmental parameters, which serves to create a need for multiple PMI methodologies with some degree of redundancy to successfully address this considerable variability.

Recent work exploring microbial bacterial succession of decomposition products in the soil has shown great promise as another methodology for the determination of short-term PMI. However, numerous microbial changes occur in the soil environment extending for months after active decomposition has finished, and study dedicated to this timeframe is virtually nonexistent.

This research proposal is based upon the following: that fungal colonies have been anecdotally observed to appear very late in the decomposition process, and that soil nematode communities undergo population shifts due to soil nutrient availabilities and can serve as indicator organisms for soil quality. Both nematodes and fungi are part of the soil eukaryotic decomposing community, and while studied in conjunction with leaf litter, have received little association with vertebrate decomposition. Given that decomposition environments have strong modulating effects on the bacterial communities present with the cadaver and the soil, it is therefore our hypothesis that these factors will also have a strong effect on the soil fungal and nematode populations inhabiting this area, and that these population changes are shifted toward primarily later time periods.

Further, as the soil environment gradually recovers from a decomposition event, these respective population shifts can serve as unique time markers for the determination of the PMI. Our study is designed to integrate cutting-edge molecular techniques with classical microscopic techniques to create quantitative means whereby PMI can be determined for extended periods after a decomposition event. This has the capability for immediate application to the criminal investigators' repertoire, as well as the virtue of employing techniques that are less likely the strain the already tight budgets of local forensic laboratories.

Most importantly, this research stands to expand the investigators' ability to formulate concrete lines of evidence in situations where victims of foul play are recovered at later intervals or in situations where it may not be possible to reach victims in a timely manner.

ca/ncf

Date Created: September 21, 2017