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Chapter 18: 

Binomial Regression Modeling 
 

Introduction 
 
 In this chapter, we discuss binomial regression models as applied to ungrouped data.  
Users should be familiar with the materials in Chapter 15, 16, and 17 before attempting to read 
this chapter.  A good background in statistics is necessary to understand the material.  
 

These are models that are applied to individual cases (records) and where the dependent 
variable has only two responses, expressed as 0 and 1.  They are part of a family of regression 
models called limited dependent variables where the range of possible values is restricted.  They 
are sometimes called restricted dependent variables or, if the restriction is one side of the 
distribution only, censored dependent variables or even truncated dependent variables.  In 
chapters16 and 17, we discussed the Poisson family of regression models.  This is a limited 
dependent variable in that 0 is the minimum since the Poisson models counts (i.e., for which the 
minimum number is 0).   
 
 However, with binomial regression models, the limitations are on both sides of the 
distribution, namely a minimum value of 0 and a maximum value of 1. Such a model is useful 
when there is a discrete choice between two alternatives, for example ‘yes’ versus ‘no’ on a 
survey or ‘males’ versus ‘females’ as a demographic distinction or even ‘under age 65’ versus 
’65 or older’ for an age group distinction.  The key is that there can only be two alternatives and 
that they have to be identified as ‘1’ or ‘0’. 
 
 The underlying model is that of a probability, which also varies from 0 to 1.  The 
problem, however, is that with a binomial variable, the underlying probabilities are not measured 
but only inferred from a discrete, binomial choice.  Thus, the models that have been proposed 
estimate the underlying probability using only the two alternative values for the dependent 
variable.   
 
 The two models that we will examine are the logistic (usually called logit) model and the 
probit model, the two most common forms for estimating the underlying probabilities. Binomial 
functions are also the basic building block for discrete choice models that comprise models for 
estimating probabilities when there are more than two alternatives.  These will be discussed in 
chapters 21 and 22. 
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Generalized Linear Models 
 
 The Generalized Linear Model (GLM) is a family of functions for estimating the 
relationship of many functions to a set of linear predictors in a regression framework (Liao, 
1994; McCullagh & Nelder, 1989).  It relates the expected mean of a distribution, μ, to a link 
function, η, which, in turn, is related to a set of linear predictors, 
 

 η 	β ∑ β X ϵ           (18.1) 
 
where, for case , β0 is the intercept, βK is the coefficient of each of the K independent variables, 
XiK, and εi is an error term.  The coefficients are applied to individual records, i.  To simplify 
notation, we will drop the case letter but it will be understood that the parameters apply to 
individual cases.  
 
 Not all functions can be estimated this way, essentially only those that belong to the 
exponential family of functions and which have a concave, closed-form solution.  In the classic 
linear form of the GLM model (Ordinary Least Squares, or OLS), which we examined in chapter 
15, the link function is simply the mean itself, 
 
 	              (18.2) 
 
 In the Poisson form, which we examined in Chapters 16 and 17, the link function is the 
natural log of the mean, 
 
 	 )            (18.3) 
 
 This brings us to binomial regression and the two forms which are also part of the GLM 
family.  First, there is the logistic (or logit) model where the link function is related to the log of 
the odds          , 
 
 	 / 1 )]           (18.4) 
 
 Second, there is the probit model where the link function is related to the inverse of the 
standard normal cumulative distribution, 
 
 	 )            (18.5) 
 
 There are other link functions that can be expressed by the GLM model, but we will 
concentrate on the logit and probit models.  The logit is the most common way to relate a 
binomial outcome to a set of independent predictors with the probit used less often.  In practice, 
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the logit and probit models produce more or less the same results (Greene, 2008).   They differ 
primarily in the tails of the distribution with the probit approaching the limiting ends of the 
probability more quickly than the logit (Chen & Tsurumi, 2011; Hahn & Soyer, 2005).  
                                                                                                                                                                                    

Logistic Model 
 
 Logit 
 
 The logistic model is related to the binomial probability. It is usually called a logit model 
because it takes the log of the odds (logit and log of the odds are equivalent terms).  If an event 
has two possible outcomes expressed as 0 and 1 (e.g. ‘head’ or ‘tails’, ‘males’ or ‘females’, ‘A’ 
or ‘B’, or any other binomial alternative), then its probability can be estimated for successive 
independent outcomes from  N observations.  Let p be the probability of obtaining one of the 
outcomes which takes the value 1 (call it A) with 1-p (sometimes called q) being the probability 
of obtaining the outcome that takes the value 0 (call it B).   
 
 Binomial Distribution 
 
 The binomial distribution defines the distribution of alternative A in O successive 
samples by (Wikipedia, 2011a; Hosmer & Lemeshow, 2001): 
 

	 1          (18.6) 

 
where P(Y=O) is the probability of obtaining exactly O instances from N observations, p is the 

probability of obtaining A for one observation, and   is the number of combinations for 

getting exactly O outcomes for A and N-O outcomes for B, and is expressed by  
 

	 !

! !
	 ….

… ….
              (18.7) 

 
where ! is a factorial.  
 
 The probability is always estimated with respect to A (or the probability of achieving a 
1).  For example, if p for A is 0.4 (and, therefore, the probability for B is 1-p, or 0.6) and there 
are 10 successive observations, each of which is independent, the probability of getting exactly 4 
instances of p and 6 instances of (1-p) is: 
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 The probability is often called a Bernoulli trial, named after the Swiss mathematician 
Jacob Bernoulli (1654-1705; Wikipedia, 2011b; Hosmer & Lemeshow, 2001).  Notice that the 
successive outcomes (sometimes called ‘trials’ or ‘experiments’) must be independent.  That is, 
the probability of achieving either of the two outcomes in an observation (or trial) must be 
constant across observations and unrelated to prior observations.  That is, the outcomes are 
random and independent.  The assumption of independence of each observation (or trial or 
experiment) is different from the MCMC method that we discussed in Chapter 17 where the 
results of each sample depend on the value from the previous sample. 
 
 In a binomial experiment, there are exactly N observations and the function P(X=K) is 
called the binomial distribution.  The binomial distribution, in turn, is a special case of the 
Poisson distribution which is a sum of N independent Bernoulli trials with a constant probability 
for each choice. The Poisson distribution expresses the probability of a given number of events 
occurring (in time or in space) if these events are independent and occur with a known 
probability.  In other words, the Poisson distribution, which we examined in Chapters 16 and 17, 
is a more general case of the binomial distribution and, in turn, is part of the GLM family of 
models. The binomial distribution becomes the Poisson for very large samples (i.e., as N 
approaches infinity) and when p is very small (Lord, Washington, & Ivan, 2005). 
 
 Odds Ratio 
 
 Another way to look at the probability of obtaining alternative A compared to alternative 
B is through the Odds Ratio (or just Odds).  This is the ratio of p to 1-p, or 
 

 	 	            (18.8) 

 
and expresses the relative likelihood of obtaining outcome A relative to outcome B.  For 
example, if p is 0.4 then 1-p is 0.6 and the odds ratio is 0.4/0.6 = 0.667.  Alternatively, if p is 0.7 
and 1-p is 0.3, then the odds ratio is 0.7/0.3 = 2.33.  Finally, if p and 1-p are equal (i.e., both are 
0.5), then the odds ratio is 0.5/0.5 = 1.  Note that with the odds ratio, a value greater than 1 
indicates that A is more likely to occur than B while a value less than 1 indicates that A is less 
likely to occur than B (or, conversely, B is more likely to occur than A). Thus, this means that A 
is about 2.3 times more likely to occur than B in the example. 
 
 Log of the Odds Ratio 
 
 Since the logit is the natural log of the odds ratio, if we let the probability, p, represent an 
estimate of the mean of the function, μ, then the logit model relates the logit of p to a linear set of 
predictors, 
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 η 	Ln β ∑ β X ε         (18.9) 

 
 This link function does three things that are useful.  First, it relates the probability of a 
binomial outcome to a set of linear predictors.  Second, taking the exponent of the logit relates 
the odds ratio to a set of linear predictors, 
 

 	 e 	∑         (18.10) 

 
 Therefore, the relative probability of obtaining outcome A relative to outcome B can be 
expressed as an exponential function of a linear set of predictors.  This means that one can relate 
the odds ratio to a set of predictors that can account for the likelihood of A relative to that of B.  
Comparisons can then be made and linked to other variable.  For example, suppose we 
categorize weapon use by robbers into two categories: 1) gun, knife or other weapon, and 2) 
using bodily force or threat.  Then, the probability of using a physical weapon relative to bodily 
force can be expressed as a function of one or more independent variables.   
 
 Third, by taking the log of the odds ratio, the dependent variable is now a continuous 
variable that varies from minus infinity to plus infinity (though in practice between -3 and +3). In 
other words, the logit also eliminates the range restriction of a dependent binomial variable since 
the logit can have any value between minus and plus infinity.   
 
 Figure 18.1 shows the effect of transforming a probability into a logit.  Notice how the 
function is fairly flat from about 0.2 to 0.8 beyond which the logit accelerates.  When we reverse 
the axes and plot the effect of a logit on the probability, we have the classic S-shaped curve 
(Figure 18.2).  The effect of a change in the logit on the probability is most pronounced in the 
middle of the probability range whereas there is less change at the low and high ends of the logit.  
In other words, the effect of the logit is to linearize the probability within the middle range of 
probability in order to allow a regression model to be tested. 
 
 Logistic Form 
 
 Equation 18.9 expresses the log of the odds as a function of linear predictors.  
Manipulating equation 18.9 leads to a solution for p, 
 

 1
∑

∑
	

∑
     (18.11) 
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which is a true logistic (S-shaped) function.  Some references refer to equation 18.9 as a logit 
and 18.11 as a logistic.  However, they are equivalent functions (Liao, 1994).   The probability of 
a 0 is simply 1 minus the probability of a 1, or 
 

 0
∑

        (18.12) 

 
 As an example, figure 18.3 illustrates the probability that is obtained from a logit model 
that is estimated by 
 

 	 10  

 
where X is a simple variable that varies from 0 to 20.  Note the coefficient for X is 1.0.  At the 
low end, the effect of increasing X is minimal in effecting the probability.  In the middle, the 
effect of X is the greatest while at the high end, again, the effect of increasing X on the 
probability is minimal.  This is the nature of a probability function since it is bounded by 0 and 1.  
The logit simply allows the probability to be regressed against one or more independent 
variables. 
 
 The model is inherently non-linear and must be solved by an iterative method.  For the 
normal logit function, maximum likelihood estimation (MLE) is used.  For more complex logit 
functions, Markov Chain Monte Carlo (MCMC) methods can be used. 
 
 Interpretation of the Logit Model 
 
  Sign of the Coefficient 
 
 Examples will be provided shortly but, there are several ways to interpret the logit model 
in equation 18.9 (Pampel, 2000).  First, there is the sign of the coefficient.  As in most regression 
models, a positive sign indicates that the independent variable increases the probability of the 
choice being made while a negative sign indicates that the independent variable decreases the 
probability of the choice being made.  Whether we interpret the results in terms of the log of the 
odds ratio, the odds ratio itself, or the probability, the sign indicates the directional effect of the 
variable. 
 
  Log of the Odds Ratio 
 
 Second, there is the log of the odds ratio.  Since the model is estimated as a log of the 
odds function, the interpretation of the coefficients is similar to other regression models, namely 
the coefficient of each independent variable expresses the change in the dependent variable from  
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a one unit change in that variable.  However, since the dependent variable is a log of the odds, 
the coefficients do not have any intuitive meaning in this form other than indicating the sign of 
the relationship (increasing or decreasing) and the relative strength of the variable as indicated by 
a Z-test (coefficient divided by standard error). 
 
 The use of logged odds for interpretation does have the advantage of symmetry.  For 
example, if the odds of obtaining one alternative (e.g., the odds that a robber will carry some 
type of weapon) is 9:1 (i.e., the probability of the alternative is 0.9 while the probability of other 
alternative is 0.1), then the log of the odds for the alternative is 2.1972.  For the other alternative, 
the log of the odds is -2.1972.  In other words, the log of the odds of the selected alternative 
(which takes the value 1) is the opposite of the log of the odds of the non-selected alternative 
(which takes the value 0). 
 
  Odds ratio 
 
 Third, a more intuitive way to interpret the logit model is through the odds ratio itself. 
Equation 18.10 above shows the odds as a function of the exponentiated linear equation.  Since 
the exponent of a sum is equal to the product of the exponent of the parts, we have 

 

 	 e 	∑ 	 e e e ……e     (18.13) 

 
 The odds ratio can be expressed as the product of the exponentiated coefficients times 
their variable values and including the error term, ε. In this case, the effect of a unit change in 
each independent variable on the odds ratio is the exponentiated coefficient.  For example, if a 
coefficient was -0.2, then the effect of a one unit change in that variable on the odds ratio will be 
e-0.2 = 0.8187 (or a decreasing effect).  Similarly, if a coefficient was 1.1, then the effect of a one 
unit change in that variable on the odds ratio will be e1.1 = 3.0042 (or an increasing effect). As 
mentioned above, the odds ratio has an intuitive meaning in that it indicates the relative 
likelihood of alternative A versus alternative B.   
 
 The percentage change for a one unit increment in the independent variable can be 
determined by (Pampel, 2000): 
 

 	 1 ∗ 100      (18.14) 

 
where βK is the coefficient of an independent variable in the logit function in equation 18.9 while 

 is the odds ratio of the variable. To use the example above, if the coefficients was -0.2, then 
the percentage change from a one unit increase in that variable is -18.1% ([e-.2-1]*100 = [0.819-
1)*100). 
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  Probability 
 
 Fourth, one can express the logit model through a probability itself, essentially solving 
equation 18.11. The result is a probability function.  Unfortunately, the effect of a coefficient on 
the probability is non-linear and not constant and changes according to the level of the 
probability.  That is, when the probability, p, is very low (e.g., 0.1), the effect of an independent 
variable is also very weak.  Similarly, when p is very high (e.g., 0.9), the effect of an 
independent variable is similarly weak.  The effects of an independent variable on the probability 
are strongest when the probability is in the middle range and the absolute strongest when the 
probability is exactly 0.5.   
 
  Variance 
 
 Fifth, an important component of a logit model is the variance.  With logit models, as 
with Poisson models, the variance is a function of the mean.  That is, the probability, p, is the 
expected value of the distribution: 
 
           (18.15) 
 
where Y is a binary variable.  The variance of a probability is, itself, a function of the mean: 
 
 	 1          (18.16) 
 
 This is the similar to the Poisson-based models where the variance of the Poisson is a 
function of mean and is always underdispersion (variance less than the mean).1 With ungrouped 
data, it is not possible for the actual variance to exceed the predicted variance since they are 
measured exactly the same (McCullagh and Nelder, 1989).  With grouped data, however, it is 
possible for the actual variance to exceed the expected variance.  However, since the logit 
routines in CrimeStat only apply to individual records (i.e., there is no grouping), the variance is 
always that indicated by equation 18.16. 
 
  The Error Term 
 
 Finally, let us discuss briefly the error term in the model, ε.  In the GLM interpretation 
(equation 18.1), the error, ε, is the difference between the observed and predicted values. With 
the OLS model discussed in Chapter 15, the errors are assumed to be normally distributed and 

                                                            
1  Note that in an Ordinary Least Squares (OLS), the variance is estimated independently of the mean.  Thus, 

there is no confounding of effects.  This is one advantage of OLS compared to Poisson or binomial models.  
On the other hand, OLS does not model skewed distributions very well nor can it model a binary variable. 
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constant (a condition known as homoscasticity).  With the Poisson family of models discussed in 
Chapters 16 and 17, the errors are normal but not constant (heteroscadstic).  For the ‘true’ 
Poisson model, they are also Poisson but for the negative binomial model, they are Gamma 
distributed. We also discussed lognormal error terms in Chapter 17.  In all cases, though, the 
errors are normally distributed.   
 
 However, for a probability, the error cannot be normally distributed except in the middle 
range of the probabilities.  Take the example shown above in figure 18.3. At the two extremes – 
the low end and the high end, the error will be much smaller than in the middle range of the 
probabilities.  In fact, the error will be greatest in the middle.  But, also, the errors must be 
asymmetrical at the two extremes.  The closer an estimated probability is to either 0 or to 1, the 
more likely the errors will be skewed and asymmetrical (meaning that they will fall on one side 
of the estimate rather than the other.  This is just a function of the limits of a probability which 
have to fall between 0 and 1.  In the middle range, however, the errors are generally symmetrical 
and normally distributed.   
 
 McFadden (1973) and Train (2009) have shown that the errors for a logit model are 
distributed extreme value distribution (sometimes called Gumbel or type I extreme value (see 
also Wikipedia, 2011c).  It is part of a family that describes extreme distributions called the 
Generalized Extreme Value distribution (Wikipedia, 2011d).  The extreme value distribution 
models the maximum or minimum at the extremes of a limited dependent variable, such as a 
probability.  Train (2009) points out that the extreme value gives slightly higher proportions at 
the extremes of a probability than a normal distribution, and also allow for the asymmetry at the 
extremes.  However, in the middle range, the extreme value distribution is virtually 
indistinguishable from a normal distribution.  It is somewhat similar to a Student’s t-distribution 
though the mathematics is different (Wikipedia, 2011e). 
 

Logit Regression 
 
 In CrimeStat, there are three different logit models.  One of these is estimated through 
maximum likelihood (MLE) while the other two are estimated through the Markov Chain Monte 
Carlo (MCMC) simulation methodology.  If readers are unfamiliar with the MCMC method, we 
suggest that they review Chapters 16 and 17 before going forward in this chapter. 
 
 Logit Analysis of Weapon Use for 2007-09 Houston Robberies 
 
  MLE Logit 
 
 In an MLE logit, the logit model shown in equation 18.9 is estimated with a maximum 
likelihood estimator.   As an example, we use data on 3,709 robberies that occurred within the 
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City of Houston from 2007-2009.  Robberies were selected in which both the crime location and 
the offender’s residence location were known.  These came from suspect lists and are only 11% 
of the total robberies committed within the City for those years.  They were selected because the 
suspect list included information on the age, gender and ethnicity of the offender, whether other 
suspects were involved, as well as the distance from the residence to the crime location.  
Additional information on the location of the crime was collected. 
 
 The dependent variable was whether a physical weapon had been used, either a firearm, a 
knife, a stick or another physical object, compared to physical force or the threat of force. Figure 
18.4 show the distribution of the robberies and the type of weapon or threat used.  Of these 3,709 
robberies, 2,333 (or 63%) involved a physical weapon.  These were coded as ‘1’ (used a physical 
weapon) or ‘0’ (did not use a physical weapon).  The goal was to estimate the characteristics 
associated with the use of a physical weapon. 
 
 Table 18.1 shows the results of a regression model relating the use of a physical weapon 
to seven independent variables.  The model was estimated with the maximum likelihood (MLE) 
Logit model in CrimeStat. Only variables that were significant at the .05 or smaller and 
which had very high tolerances were selected for the model (the process of eliminating non-
significant and collinear variables is not shown).  See Chapters 15 and 17 for a discussion of 
multicollinearity. 
 
 The log likelihood is substantially negative and the AIC and BIC, statistics used to 
correct the log likelihood for the number of independent variables (see Chapter 16, p. 16.5) are 
substantially positive, as would be expected.  However, given that there are 3,709 records, we 
would expect the models to be significant.   
 

Therefore, one has to look at other statistics.  In terms of the overall probability, the 
deviance and the Pearson chi-square are both significant, indicating that the model is 
significantly different from a random model (which would be expected).  On the other hand, 
when these are adjusted for degrees of freedom (adjusted deviance and adjusted Pearson Chi-
square), the statistics are not significant.  This indicates that fit of the model was.  This is 
supported by the mean absolute deviation and the measured squared predicted error statistics 
which shows the model fit quite well (a discussion of these statistics are found in Chapter 16).  
Keep in mind, though, that the dependent variable is binary which means that there are only 
values of 0 or 1.   
 
 All six independent variables are highly significant.  The tolerance statistics indicate that 
they are almost completely independent (note, this is not surprising since we eliminated collinear 
statistics while building the model).  This is an important point that we keep re-iterating.   
  



Figure 18.4:
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Table 18.1 
Weapon Use by 2007-09 Houston Robbers: 

MLE Binomial Logit Model 
(N=3,709 Robberies with Known Origin & Destination Coordinates) 

 
DepVar:   WEAPON USE IN ROBBERIES 
 N:                                   3,709 
 Df:                                  3,696 
 Type of regression model:   Logit 
 Method of estimation:          Maximum Likelihood 
 
      Likelihood statistics 
 Log Likelihood:                     -2,345.7 
 AIC:                                 4,707.3 
 BIC/SC:                              4,757.1 
 Deviance:                           2,086.1  p:  0.0001 
 Pearson Chi-Square:                 1,373.3  p:  0.0001 
      Model error estimates 
 Mean absolute deviation:   0.4 
      1st (highest) quartile:        0.4 
      2nd quartile:                  0.4 
      3rd quartile:                   0.5 
      4th (lowest) quartile:         0.6 
 Mean squared predicted error:  0.2 
      1st (highest) quartile:        0.1 
      2nd quartile:                  0.1 
      3rd quartile:                   0.3 
      4th (lowest) quartile:         0.4 
      Dispersion tests 
 Adjusted deviance:                  0.6  p: n.s. 
 Adjusted Pearson Chi-Square: 0.4  p: n.s. 
 
Predictor  DF Coefficient Stand Error   Tolerance Z-value   p Odds ratio 
--------------------------------------------------------------------------------------------------------------------------- 
 INTERCEPT   1   0.7005  0.147         -  4.76 0.001   2.015 
 AGE       1     -0.0197      0.003       0.965     -5.67 0.001   0.981 
 GENDER    1     -0.6059      0.110       0.992     -5.53 0.001    0.546  
 # SUSPECTS     1      0.2981      0.043       0.979      6.89 0.001   1.347 
NIGHT      1      0.5225      0.092       0.985      5.68  0.001   1.686 
 MEDIAN 
HOUSEHOLD 
INCOME    1     -0.000008    0.000002    0.981     -3.47  0.001   1.000 
DISTANCE TO 
   DOWNTOWN 1      0.0316      0.007       0.966      4.56  0.001   1.032 
--------------------------------------------------------------------------------------------------------------------------- 
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Typically, both an MLE and an MCMC model will converge more quickly and will produce 
cleaner estimates if the independent variables are truly independent. 
 

Examining the effects of the individual variables, younger offenders and those who are 
male are more likely to use a physical weapon.  Looking at the odds ratio of -0.0197 means that 
for each year of age for a robber, the likelihood of using a physical weapon decreases by about 
2% ([e0.0197-1]*100).  Female robbers (those whose gender value is 1 in the model) are 45% less 
likely than males to use a physical weapon ([e-0.6059 – 1]*100).  
 
 On the other hand, the more suspects/co-offenders involved in the robbery, the more 
likely there will be a use of a physical weapon.  With an odds ratio of 1.347, each additional co-
offender increases the likelihood of using a physical weapon by 35% ([e1.347-1]*100) compared 
to a robbery with only a single offender.  Similarly, robberies committed at night time (Midnight 
to 6 am) are 69% more likely to involve a physical weapon ([e1.686-1]*100). 
 
 The environmental variables suggest a small effect for income (decreasing) and a small 
effect for distance (increasing).  Why robberies committed farther from downtown involve a 
greater likelihood of having a physical weapon involved is not clear.  For the other variables, the 
effects are what we would expect.  
 
 Note that the odds ratio gives the relative likelihood of the independent variable on the 
dependent variable.  For categorical independent variables, such as GENDER or NIGHT, the 
comparison is between the group with the value 1 (females and night time respectively) 
compared to the group with the value 0 (males and other time periods respectively).  For 
continuous independent variables, such as AGE and #SUSPECTS, the odds ratio indicates the 
incremental effect of a one unit change in that variable.   
 
  MCMC Logit 
 
 CrimeStat includes both maximum likelihood and MCMC versions of the logit.  For 
comparison, we ran the same model as in Table 18.1 using the MCMC algorithm.  There were 
25,000 iterations with 5,000 of these being discarded (‘burn in’).  Hence, the final results were 
from the 20,000 iterations beyond the ‘burn in’ sample.  Table 18.2 shows the results. 
 
 The log likelihood value is stronger (more negative) than for the MLE logit while the 
AIC and BIC statistics are more positive.  The deviance and Pearson chi-square statistics are 
very similar to the MLE logit and indicate that the model was significantly different than one fit 
by chance.  The MCMC error relative to the standard deviation values are all below 0.05 and the 
G-R statistics are well below 1.2 (see Chapter 17 for explanation of these indices).   
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Table 18.2 

Weapon Use by 2007-09 Houston Robbers: 
MCMC Binomial Logit Model 

(N=3,709 Robberies with Known Origin & Destination Coordinates) 
 
DepVar:   WEAPON USE IN ROBBERY 
 N:                                   3,709 
 Df:                                  3,701 
 Type of regression model:   Logit 
 Method of estimation:          MCMC 
Number of iterations:  25,000  Burn in:   5,000 
 Likelihood statistics 
 Log Likelihood:                      -2,348.1 
 AIC:                                  4,712.3 
 BIC/SC:                               4,762.0 
 Deviance:    -587.3  p:  0.0001 
Pearson Chi-square:   1,373.6  p:  0.0001 
 Model error estimates 
 Mean absolute deviation:             0.4 

1st (highest) quartile:        0.3 
 2nd quartile:         0.4 
 3rd quartile:         0.5 
 4th (lowest) quartile:        0.6 
 Mean squared predicted error:        0.2 

1st (highest) quartile:       0.1 
 2nd quartile:         0.1 
 3rd quartile:         0.3 
 4th (lowest) quartile:        0.4 
   Dispersion tests 
 Adjusted deviance:                   -0.2  p:  n.s. 
 Adjusted Pearson Chi-Square:         0.4  p:  n.s. 
                   MC error/ 
Predictor     Mean     Std    t-valuep          . MC error std      G-R stat         Odds ratio 
-------------------------------------------------------------------------------------------------------------------------------------------- 
INTERCEPT    0.6923    0.150    4.60***      0.005   0.035    1.008   1.998 
AGE   -0.0197    0.003   -5.65***    0.0001      0.030     1.004   0.981 
GENDER    -0.6070     0.110   -5.50***    0.001       0.008     1.000   0.545 
# SUSPECTS  0.3005    0.044    6.81***     0.001       0.022     1.003   1.350 
NIGHT    0.5249     0.091    5.74***     0.001       0.009     1.000   1.690 
MEDIAN 
  HOUSEHOLD 
  INCOME   -0.000008 0.0000   -3.29**     0.0000006   0.024     1.004   1.000 
DISTANCE TO 
  DOWNTOWN  0.0318     0.007    4.58***  0.0001      0.011     1.000  1.032 
-------------------------------------------------------------------------------------------------------------------------------------------- 
*** p≤.001 
**   p≤.01 



 

18.18 

Note, also, that the deviance statistic is negative in Table 18.2.  This is because the 
posterior distribution of the dependent variable (weapon use in robberies) is not normal since it is 
constrained by the binomial variable to be between 0 and 1 and has a small standard deviation 
(Spiegelhalter, 2006).  Thus, with an MCMC logit model, one might expect a negative deviance.  
This was not true with the MLE logit model in Table 18.1, however. In either case, the adjusted 
deviance is not significant, suggesting that the dispersion has been adequately accounted. 
 
 The coefficient estimates are almost identical. They differ only in the third decimal place 
for several values.  Similarly, the standard error estimates are also quite similar up through the 
second decimal place.  Finally, the odds ratios are almost identical for the two estimates, up 
through the second decimal place. 
 
 Note that there is no dispersion measure in the logit model.  The reason is that the 
standard deviation of a binomial variable is always: 
 

 1         (18.20) 

 
 In short, the MCMC logit has replicated the MLE logit model for Houston robbery 
weapon use.  So, why run an MCMC model when an MLE will produce almost identical results 
in a fraction of the time?   The reason has to do with running more complex models than a simple 
logit, particularly a binomial logit with an estimate of spatial autocorrelation. Chapter 19 will 
discuss that issue. 
 
  MCMC Logit-CAR/SAR 
 
 The final logit model is a spatial model.  This will be discussed in Chapter 19. 

 
Probit Model 
 
  MLE Probit  
 
 The logit is the most commonly used way to model a binary variable.  But, there are other 
functions that can also linearize a binary dependent variable.  One commonly used one is the 
probit function for which the link function was defined in equation 18.5.   The probit expresses 
the inverse of the cumulative standard normal distribution as a linear function of independent 
variables (without an error term): 
 

 1 β ∑ β X       (18.21) 
           
where Φ is the cumulative standard normal distribution, 
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 The inverse of the cumulative standard normal distribution is a Z-score and, essentially, 
the probit is a cumulative Z-score for a one-tailed probability: 

 1 β ∑ β X        (18.23) 
 
 The area under the standard normal distribution is 1.0.  Starting at minus infinity, the area 
under the curve can be expressed as a probability and the link function, η, is a linear regression 
of the Z score of the event probability (Liao, 1994).  The probability of a non-event is 1 minus 
the probability, or 
 

 0 1 β ∑ β X        (18.24) 
 
 Interpreting the coefficients is not intuitive because it involves additive effects of the 
intercept and independent variables on the inverse of the cumulative standard normal 
distribution.  Also, unlike the logit function, there is not an odds ratio.  Nevertheless, the signs of 
the coefficients are in the same direction as for the logit model and the Z-values produced by 
coefficients divided by their standard errors are usually of the same magnitude.   
 
 To see this, we model weapon use among the Houston robbers (Table 18.3).  Comparing 
this table with MLE logit model (Table 18.1), the likelihood statistics are virtually the same; the 
signs of the coefficients are identical and the Z-scores of the coefficients are of the same 
magnitude.  The values of the coefficients are, of course, very different since they express the 
dependent binary variable in different units.  The model is estimated in CrimeStat with 
maximum likelihood.  At this point, there are no MCMC probit models though we may add them 
in later versions. 
 
 Utility of the Probit Model 
 
 With most datasets, the logit and probit models will produce almost identical conclusions.  
They differ primarily in the tails of the distribution with the probit approaching the limiting ends 
of the probability more quickly than the logit.   
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Table 18.3: 

Weapon Use by 2007-09 Houston Robbers: 
MLE Probit Model 

(N=3,709 Robberies with Known Origin & Destination Coordinates) 
 
DepVar:   WEAPON USE IN ROBBERY 
 N:                                   3,709 
 Df:                                  3,696 
 Type of regression model:   Probit 
 Method of estimation:          Maximum Likelihood 
 
  Likelihood statistics 
 Log Likelihood:                     -2,347.4 
 AIC:                                 4,710.9 
 BIC/SC:                              4,760.6 
 Deviance:                           4,479.6  p:  0.0001 
 Pearson Chi-Square:                 2,472.9  p:  0.0001 
  Model error estimates 
 Mean absolute deviation:   0.9 
      1st (highest) quartile:        0.6 
      2nd quartile:                  0.6 
      3rd quartile:                   0.9 
      4th (lowest) quartile:         1.4 
 Mean squared predicted error:  1.2 
      1st (highest) quartile:        0.6 
      2nd quartile:                  0.6 
      3rd quartile:                   1.2 
      4th (lowest) quartile:         2.2 
 Dispersion tests 
 Adjusted deviance:                  1.2  p:  n.s. 
 Adjusted Pearson Chi-Square: 0.7  p:  n.s. 
 
Predictor  DF Coefficient Stand Error    Tolerance Z-value   p 
---------------------------------------------------------------------------------------------------------- 
INTERCEPT   1   0.4550  0.089         -  5.10 0.001 
AGE       1     -0.0121      0.002       0.965     -5.68 0.001 
GENDER    1     -0.3706      0.068       0.992     -5.47 0.001 
 # SUSPECTS     1      0.1656      0.024       0.979      6.89 0.001 
NIGHT      1      0.3181      0.055       0.985      5.78  0.001 
MEDIAN 
  HOUSEHOLD 
  INCOME   1     -0.000005    0.000001    0.981     -3.38  0.001 
DISTANCE TO 
   DOWNTOWN   1      0.0191      0.004       0.966      4.63  0.001 
---------------------------------------------------------------------------------------------------------- 
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Using the example discussed in chapters 15, 16 and 17, we model 2006 Houston 
burglaries in 1,179 traffic analysis zones (TAZ).  But, instead of modeling the number of 
burglaries per TAZ, we created a binomial variable for one or more burglaries. The dependent 
variable was whether the TAZ had one or more burglaries in 2006 and the two independent 
variables were the number of households in 2006 and the 2000 median household income. Table 
18.4 shows the result of the probit model while table 18.5 shows the result of the logit model. 

 
There are some subtle differences.  The logit model has a higher log likelihood value 

(i.e., less negative) and lower AIC and BIC values, suggesting that it is a better probability 
model.   The model error statistics (mean absolute deviation and mean squared predicted error) 
are similar though the logit does a better job in fitting the fourth (lowest) quartile.  

 
The coefficients, however, are a little different.  The intercept for the logit is significant 

while that of the probit is not.  The coefficient for median household income is almost significant 
in the logit model (p≤ 0.1) while it not significant in the probit model.  Whether these differences 
are meaningful would depend on what the researcher is willing to assume.  As mentioned, the 
probit assumes an underlying normal distribution while the logit does not.  If the transition from 
a measured null response (0) to a counted response (1) is assumed to be gradual, then the probit 
may make more theoretical sense. 

 
Figure 18.5 graphs the results of the two models.   As seen, the probit model levels off 

more quickly than the logit model.  That is, at the low end, it approaches both the low and high 
asymptote more quickly than the logit.  The probit shows a more gradual change than the logit, 
which could be a more realistic representation of the shift in probabilities from the null condition 
to the prevalence of the phenomenon. 

  
Nevertheless, the two models are very highly correlated. Hahn and Soyer (2005) make 

the point that the two models will be different if the values at the ends are of interest.  For most 
other tests, however, the estimated probabilities will be very similar.  

 
Conclusion 
 
 We have examined two different models for estimating the effects of independent 
variables on a binary dependent variable, the logit and the probit.  The logit is clearly more 
convenient to use given that the exponentiated coefficients can be expressed in terms of the odds 
ratio.  That is the main reason that it more widely used.  In Chapter 19, we will show how an 
MCMC version of the logit can be adapted to estimate spatial autocorrelation in the dependent 
variable. 
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Logit and Probit Predictions of Houston Burglaries: 2005‐2007
1,179 Traffic Analysis Zones with One or More Burglaries
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Table 18.4: 

Predicting Burglaries in the City of Houston: 2006 
MLE Probit Model 

(N= 1,179 Traffic Analysis Zones) 
 
DepVar:   ONE OR MORE BURGLARIES 
 N:                                   1,179 
 Df:                                  1,175 
 Type of regression model:   Probit 
 Method of estimation:          Maximum Likelihood 
 
  Likelihood statistics 
 Log Likelihood:                     -427.5 
 AIC:                                 863.0 
 BIC/SC:                              883.3 
 Deviance:                           347.4  p:  0.0001 
 Pearson Chi-Square:                 220.4  p:  0.0001 
  Model error estimates 
 Mean absolute deviation:   0.2 
      1st (highest) quartile:        0.1 
      2nd quartile:                  0.2 
      3rd quartile:                   0.1 
      4th (lowest) quartile:         1.5 
 Mean squared predicted error:  0.1 
      1st (highest) quartile:        0.0 
      2nd quartile:                  0.1 
      3rd quartile:                   0.0 
      4th (lowest) quartile:         0.3 
 Dispersion tests 
 Adjusted deviance:                  0.3  p:  n.s. 
 Adjusted Pearson Chi-Square: 0.2  p:  n.s. 
 
Predictor   DF Coefficient Stand Error    Tolerance  t-value     p 

--------------------------------------------------------------------------------------------------------------------- 
INTERCEPT  1  0.0252    0.083    -    0.03     n.s. 
HOUSEHOLDS  1  0.0023    0.0002   0.994  14.34     0.001 
MEDIAN  
HOUSEHOLD 
INCOME  1 0.000002 0.00000 2  0.994  1.28      n.s. 
--------------------------------------------------------------------------------------------------------------------- 
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Table 18.5: 

Predicting Burglaries in the City of Houston: 2006 
MLE Logit Model 

(N= 1,179 Traffic Analysis Zones) 
 
DepVar:   ONE OR MORE BURGLARIES 
 N:                                   1,179 
 Df:                                  1,175 
 Type of regression model:   Probit 
 Method of estimation:          Maximum Likelihood 
 
  Likelihood statistics 
 Log Likelihood:                     -389.8 
 AIC:                                 787.7 
 BIC/SC:                              807.9 
 Deviance:                           325.4  p:  0.0001 
 Pearson Chi-Square:                 222.6  p:  0.0001 
  Model error estimates 
 Mean absolute deviation:   0.2 
      1st (highest) quartile:        0.1 
      2nd quartile:                  0.2 
      3rd quartile:                   0.1 
      4th (lowest) quartile:         0.4 
 Mean squared predicted error:  0.1 
      1st (highest) quartile:        0.0 
      2nd quartile:                  0.1 
      3rd quartile:                   0.0 
      4th (lowest) quartile:         0.2 
 Dispersion tests 
 Adjusted deviance:                  0.3  p:  n.s. 
 Adjusted Pearson Chi-Square: 0.2  p:  n.s. 
 
Predictor   DF Coefficient Stand Error    Tolerance  t-value     p 

----------------------------------------------------------------------------------------------------------------------- 
INTERCEPT  1  -0.3591 0.151    -  -2.38    0.05 
HOUSEHOLDS  1   0.0073    0.001   0.994  10.31    0.001 
MEDIAN  
HOUSEHOLD 
INCOME  1   0.000006 0.000003  0.994  1.88    n.s. 
----------------------------------------------------------------------------------------------------------------------- 
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 On the other hand, the probit model has applicability in random utility theory which will 
be discussed in Chapter 21.  Train (2009) argues that the probit model can allow for variations in 
the ‘tastes’ of decision makers whereas the logit model imposes greater restrictions on the 
interpretation of coefficients.  It can be used to estimate non-constant error variance 
(heteroscedastic probit models; see Train, 2009) while the logit cannot. But, in general, there 
really is not much of a difference in their conclusions when applied to the same data. 
 
 The final point is that a binary variable, whether measured by the logit or the probit 
model, is the simplest form of modeling a choice made by a decision-maker.  Hence, the logit 
form (and to a lesser extent, the probit) has widespread applicability in decision theory and is the 
basis of discrete choice modeling (Train, 2009; McFadden, 1973).  Chapter 21 will discuss this. 
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