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Chapter 16: 

Poisson Regression Modeling 

 
In this chapter, we discuss Poisson models for estimating count variables. 

 

Count Data Models 
 
 In chapter 15, we examined Ordinary Least Squares (OLS) regression models.  We 
showed that these models were bound by some strong assumptions of a normally-distributed 
dependent variable and errors that were normal and constant.  We then demonstrated that OLS 
models are inadequate for describing skewed distributions, particularly counts.  Given that crime 
analysis usually involves the analysis of counts, this is a serious deficiency.   
 

Poisson Regression 
 
 Consequently, we turn to count data models, in particular the Poisson family of models. 
This family is part of the generalized linear models (GLMs), in which the OLS normal model 
described above is a special case (McCullagh & Nelder, 1989). Poisson regression is a modeling 
method that overcomes some of the problems of traditional regression in which the errors are 
assumed to be normally distributed (Cameron & Trivedi, 1998).  In the model, the number of 
events is modeled as a Poisson random variable with a probability of occurrence being: 
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where iy  is the count for one group or class, i,   is the mean count over all groups, and e is the 

base of the natural logarithm.  The distribution has a single parameter, , which is both the mean 
and the variance of the function.   
 
 The “law of rare events” assumes that the total number of events will approximate a 
Poisson distribution if an event occurs in any of a large number of trials but the probability of 
occurrence in any given trial is small and assumed to be constant (Cameron & Trivedi, 1998).  
Thus, the Poisson distribution is very appropriate for the analysis of rare events such as crime 
incidents (or motor vehicle crashes or uncommon diseases or any other rare event).  The Poisson 
model is not particularly good if the probability of an event is more balanced; for that, the normal 
distribution is a better model as the sampling distribution will approximate normality with 
increasing sample size.  Figure 16.1 illustrates the Poisson distribution for different expected 
means. 



Figure 16.1:
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 The Poisson distribution is part of a large family known as the exponential family of 
distributions (McCullagh & Nelder, 1989).  The probability distribution for this family is 
expressed as (Hilbe, 2008): 
 

 ݂ሺݕ௜: ,ߤ ሻߔ ൌ 	 ݁
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where ߠ௜ is the canonical parameter or link function for observation ݅, b(ߠ௜) is the cumulant for 
observation	݅, α(ߔ) is the scale parameter which is set to one in discrete and count models, and 
C(yi: ߔ) is a normalization (scaling) term that guarantees that the probability function sums to 1.  
This family of functions is unique in that the first and second derivatives of the cumulant, with 
respect to ߠ, produce the mean and variance function (Hilbe, 2008).  All members of the class of 
generalized linear models can be converted to the exponential form. 
 

 Since the Poisson family is a member of the exponential family, the mean can be 
modeled as a function of some other variables (the independent variables).  Given a set of 
observations on one or more independent variables, ),,,1( 1 Kii

T
i xx x , the conditional mean of 

iy  can be specified as an exponential function of the x’s: 
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where i is an observation, T

ix  is a set of independent variables including an intercept, 
T

K ),,,( 10  β  are a set of coefficients, and e is the base of the natural logarithm.  

Equation 16.3 can be also written as: 
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where each independent variable, k , is multiplied by a coefficient, k , and is added to a 

constant, 0 .  In expressing the equation in this form, we have transformed it using a link 

function, the link being the log-linear relationship.  As discussed above, the Poisson model is 
part of the GLM framework in which the functional relationship is expressed as a linear 
combination of predictive variables.  This type of model is sometimes known as a loglinear 
model as the natural log of the mean is a linear function of K independent variables and an 
intercept.   
 

However, we will refer to it as a Poisson model.  In more familiar notation, this is   
 

 KiKiii xxx   22110)ln(            (16.5) 
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 For the Poisson model, the log-likelihood is: 
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where )exp( βxT
ii   is the conditional mean for zone i,  and iy  is the observed number of 

events for observation i.  Anselin provides a more detailed discussion of these functions in 
Appendix B. The data are assumed to reflect the Poisson model and the variance equals the 
mean.  Therefore, it is expected that the residual errors should increase with the conditional 
mean.  That is, there is inherent heteroscedasticity in a Poisson model (Cameron & Trivedi, 
1998).  This is different than a normal model where the residual errors are expected to be 
constant.   
 
 The model is estimated using a maximum likelihood (MLE) procedure, typically the 
Newton-Raphson method or, occasionally, using Fisher scores (Wikipedia, 2010; Cameron & 
Trivedi, 1998).  In Appendix B, Anselin presents a more formal treatment of both the normal and 
Poisson regression models including the methods by which they are estimated. 
 
 Advantages of the Poisson Regression Model 
 
 The Poisson model overcomes some of the problems of the normal model.  First, the 
Poisson model has a minimum value of 0.  It will not predict negative values.  This makes it 
ideal for a distribution in which the mean or the most typical value is close to 0.  Second, the 
Poisson is a fundamentally skewed model; that is, it is data characterized with a long ‘right tail’.  
Again, this model is appropriate for counts of rare events, such as crime incidents. 
 
 Third, because the Poisson model is estimated by the maximum likelihood method, the 
estimates are adapted to the actual data.  In practice, this means that the sum of the predicted 
values is virtually identical to the sum of the input values, with the exception of a very slight 
rounding off error.  
 
 Fourth, compared to the normal model, the Poisson model generally gives a better 
estimate of the counts for each record.  The problem of over- or underestimating the number of 
incidents for most records with the normal model is usually lessened with the Poisson. When the 
residual errors are calculated, generally the Poisson has a lower total error than the normal 
model, as was illustrated in chapter 15.  
 
 In short, the Poisson model has some desirable statistical properties that make it very 
useful for predicting crime incidents.  
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 Example of Poisson Regression 
 
 Using the same Houston burglary database as in chapter 15, we estimate a Poisson model 
of the two independent predictors of burglaries (Table 16.1).   
 

Likelihood Statistics 
 
   Log-likelihood 
 

The summary statistics are quite different from the normal model.  In the CrimeStat 
implementation, there are five separate statistics about the likelihood, representing a joint 
probability function that is maximized.  First, there is the log-likelihood (L).  The likelihood 
function is the joint (product) density of all the observations given values for the coefficients and 
the error variance.  The log-likelihood is the log of this product or the sum of the individual 
densities. Because the function maximizes a probability, which is always between 0 and 1, the 
log-likelihood is always negative with a Poisson model.  

 
Note that in comparing two models, the model with the smallest log-likehood will fit the 

data better assuming that the data set and the dependent variable are the same.  For example, if 
one model has a log-likelihood of -4,000 and a second model on the same data set and dependent 
variable has a log-likelihood of -5,000, the first model is better because it has a smaller log-
likelihood than the second model.  While this is unintuitive, it makes sense in terms of 
probability theory.  If the probability of the first model is 0.6 and that of the second 0.4, then the 
log-likelhood of the first model will be -0.51 and that of the second -.91. Since a likelihood is the 
product of the densities of each individual case (and, therefore, the log-likelihood is the sum of 
the individual logarithms), in practice the log-likelihood is proportional to the probability. 

 
  Aikaike Information Criterion (AIC) 
 
Second, the Aikaike Information Criterion (AIC) adjusts the log-likelihood for degrees of 

freedom since adding more variables will always increase the log-likelihood.   It is defined as: 
 
 AIC  =  -2L + 2(K+1)                               (16.7) 

 
where L is the log-likelihood and K is the number of independent variables.  The model with the 
lowest AIC is ‘best’. 
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Table 16.1: 

Predicting Burglaries in the City of Houston: 2006 
Poisson Model 

(N= 1,179 Traffic Analysis Zones) 
 
DepVar:                             2006 BURGLARIES 
N:                                    1,179 
Df:                                   1,175 
Type of regression model:            Poisson 
Method of estimation:   Maximum likelihood 
 
 Likelihood statistics 
 Log-likelihood:                     -13,639.5 
 AIC:                                 27,287.1 
 BIC/SC:                             27,307.4 
 Deviance:    23,021.4 p:   0.0001 
 Pearson Chi-square:   24,804.4 p:   0.0001 
 Model error estimates 
 Mean absolute deviation:            16.0 

1st (highest) quartile:       33.9 
 2nd quartile:        7.3 
 3rd quartile:        8.8 
 4th (lowest) quartile:       13.9 
 Mean squared predicted error:      714.2 

1st (highest) quartile:       2,351.8 
 2nd quartile:        203.7 
 3rd quartile:        99.8 
 4th (lowest) quartile:       206.7 
 Dispersion tests 
 Adjusted deviance:   19.6 p: 0.0001 
 Adjusted Pearson Chi-Square:        21.1 p: 0.0001 
 Dispersion multiplier:               21.1 p: 0.0001 Inverse dispersion multiplier:     0.05 
 
Predictor  DF Coefficient Stand Error Tolerance VIF  Z-value    p 
-------------------------------------------------------------------------------------------------------------------------------
INTERCEPT  1  2.8745    0.014    -    -  212.47    0.001 
HOUSEHOLDS  1  0.0006    0.000004  0.994  1.006  146.24    0.001 
MEDIAN  
HOUSEHOLD 
INCOME  1 -0.000009 0.00000   0.994  1.006  -28.68     0.001 
------------------------------------------------------------------------------------------------------------------------------- 

  
 



16.7 

Bayes Information Criterion (BIC/SC) 
  

Third, another measure which is very similar is the Bayes Information Criterion (BIC/SC, 
sometimes called Schwartz Criterion), which is defined as: 
 
 BIC/SC  =  -2L+[(K+1)ln(N)]                         (16.8) 
 

These two measures penalize the number of parameters added in the model, and reverse 
the sign of the log-likelihood (L) so that the statistics are more intuitive.  The model with the 
lowest BIC/SC value is ‘best’. 
 

Deviance 
 
Fourth, a decision about whether the Poisson model is appropriate can be based on the 

statistic called the deviance which is defined as: 
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where FL  is the log-likelihood that would be achieved if the model gave a perfect fit and  ML is 

the log-likelihood of the model under consideration. If the latter model is correct, the deviance 

(Dev) is approximately 2 distributed with degrees of freedom equal to )1(  KN .   A value of 

the deviance greatly in excess of )1(  KN  suggests that the model is over-dispersed due to 

missing variables or non-Poisson form.  This statistic is sometimes called the G2 statistic (Bishop, 
Feinberg, & Holland, 1975).  The deviance has N-K-1 degrees of freedom where K is the number 
of parameters estimated (including the constant). 
 
  Pearson Chi-square 
 

Fifth, there is the Pearson Chi-square statistic which is defined by  
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 If the mean and the variance are properly specified, then  ܧ ቂ∑ ሺݕ௜ െ
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(Cameron and Trivedi, 1998).  Values closer to N (the sample size) show a better fit.  The 
Pearson Chi-square has N-K-1 degrees of freedom where K is the number of parameters 
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estimated (including the constant).  Note, that the expected value depends on the variance 
function, which we will discuss below. 

 
  Model Error Estimates 
 
 Next, there are two statistics that measure how well the model fits the data (goodness-of-
fit).  Mean Absolute Deviation (MAD) and Mean Squared Predicted Error (MSPE) were defined 
in Chapter 15. Comparing these with the results of the normal model (Table 15.1), it can be seen 
that the overall MAD and MSPE are slightly worse than for the normal model, though much 
better than with the log transformed linear model (Table 15.4).  Comparing the four quartiles, it 
can be seen that for three of the four quartiles the normal model had slightly better MAD and 
MSPE scores than for the Poisson but the differences were not great.  
 
  Dispersion Tests 
 
 The remaining four summary statistics measure dispersion.  A more extensive discussion 
of dispersion is given later in the chapter.  But, very simply, in the Poisson framework, the 
variance should equal the mean.  These statistics indicate the extent to which the variance 
exceeds the mean.  
 

First, the adjusted deviance is defined as the deviance divided by the degrees of freedom 
(N-K-1); a value closer to 1 indicates a satisfactory goodness-of-fit. Usually, values greater than 
1 indicate signs of over-dispersion.   

 
Second, the adjusted Pearson Chi-square is defined as the Pearson Chi-square divided by 

the degrees of freedom; again, a value closer to 1 indicates a satisfactory goodness-of-fit.   
 
Third, the dispersion multiplier, γ, measures the extent to which the conditional variance 

exceeds the conditional mean (conditional on the independent variables and the intercept term) 
and is defined by 2)( iiiyVar   .  The Z-test of the dispersion multiplier indicates whether 

the amount of dispersion is significantly greater than that assumed by the Poisson model (Hilbe, 
2008).  The test is: 

 

ܼ	 ൌ 	
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                (16.11) 

 
 where yi is the observed value of Y and μi is the predicted value of Y.  The statistic is a test of 
over-dispersion, that the conditional variance is greater than the conditional mean. A significant 
value for Z indicates that the assumption of equi-dispersion of the conditional variance is 
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rejected and the model should be estimated as a negative binomial or lognormal for over-
dispersion.   
 
 In some cases, there may be under-dispersion, that is where the conditional variance is 
less than the conditional mean.  In this case, a Poisson with linear correction should be used.  
Unfortunately, the Z-test will identify that as being not significant. We are not aware of a good 
test for under-dispersion and the user will have to use judgment. 

 
Fourth, the inverse dispersion multiplier )( is simply the reciprocal of the dispersion 

multiplier )/1(   ; some users are more familiar with it in this form. 

 
As seen in Table 16.1, the four dispersion statistics are much greater than 1 and indicate 

over-dispersion.  In other words, the conditional variance is greater – in this case, much greater, 
than the conditional mean.  The ‘pure’ Poisson model (in which the variance is supposed to equal 
the mean) is not an appropriate model for these data. 

 
 Individual Coefficient Statistics 
 
 Finally, the signs of the coefficients are the same as for the normal and transformed 
normal models, as would be expected.  The relative strengths of the variables, as seen through 
the Z-values, are also approximately the same.   
 
 In short, the Poisson model has produced results that are an alternative to the normal 
model.  While the likelihood statistics indicate that, in this instance, the normal model is slightly 
better, the Poisson model has the advantage of being theoretically sounder.  In particular, it is not 
possible to get a minimum predicted value less than zero (which is possible with the normal 
model) and the sum of the predicted values will always equal the sum of the input values (which 
is rarely true with the normal model). With a more skewed dependent variable, the Poisson 
model will usually fit the data better than the normal as well.  

 

Problems with the Poisson Regression Model 
 
 On the other hand, the Poisson model is not perfect.  The primary problem is that count 
data are usually over-dispersed.  
 

Over-dispersion in the Residual Errors 
 

In the Poisson distribution, the mean equals the variance.  In a Poisson regression model, 
the mathematical function, therefore, equates the conditional mean (the mean controlling for all 
the predictor variables) with the conditional variance.  However, most actual distributions have a 
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high degree of skewness, much more than are assumed by the Poisson distribution (Cameron & 
Trivedi, 1998; Mitra & Washington, 2007).  

 
As an example, figure 16.2 shows the distribution of Baltimore County and Baltimore 

City crime origins and Baltimore County crime destinations by TAZ.  For the origin distribution, 
the ratio of the variance to the mean is 14.7; that is, the variance is 14.7 times that of the mean!  
For the destination distribution, the ratio is 401.5!   
 
 In other words, the simple variance is many times greater than the mean. We have not yet 
estimated some predictor variables for these variables, but it is probable that even when this is 
done the conditional variance will far exceed the conditional mean.  Many real-world count data 
are similar to this; the variance will usually be much greater than the mean (Lord, 2006) 
although, occasionally, the variance can be smaller than the conditional mean (Lord, 2010).  
What this means in practice is that the residual errors - the difference between the observed and 
predicted values for each zone, will be greater than what is expected.  The Poisson model 
calculates a standard error as if the variance equals the mean.  Thus, the standard error will be 
underestimated using a Poisson model and, therefore, the significance tests (the coefficient 
divided by the standard error) will be greater than they really should be.  In a Poisson multiple 
regression model, we might end up selecting variables that really should not be selected because 
we think they are statistically significant when, in fact, they are not (Park & Lord, 2007). 
 

Under-dispersion in the Residual Errors 
 
 There are also cases where the conditional variance is less than the conditional mean 
(under-dispersion).  This happens sometimes with crime data.  For example, in an analysis of 
drunk driving crashes in Baltimore County, we found that the modeled variance was 
substantially less than the modeled mean (Levine & Canter, 2011).  In both cases, one needs to 
correct the estimated standard error from the Poisson model. 
 
 To visualize over- and under-dispersion, Figure 16.3 shows three different skewed 
distributions, over-dispersed, equi-dispersed (Poisson), and under-dispersed.  These are based on 
the variance-to-mean ratios of the raw data.  Note that the over-dispersed distribution is 
extremely skewed while the under-dispersed distribution is mildly skewed.  Still, with under-
distribution, one cannot assume a normal distribution because it will still underestimate the high 
values of the dependent variable. 
 

Also, the actual dispersion is conditional on the independent variables (i.e., after the 
model has been run).  However, Cameron and Trivedi (1998) suggest that if the raw variance-to-
mean ratio is less than 2.0, most likely the conditional variance will be less than the conditional 
mean.   
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Figure 16.3:
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Poisson Regression with Linear Dispersion Correction 
 
 There are a number of methods for correcting the over-dispersion in a count model.  Most 
of them involve modifying the assumption of the conditional variance equal to the conditional 
mean.  The first is a simple linear correction known as the linear negative binomial (or NB1 
model; Cameron & Trivedi, 1998, 63-65).  The variance of the function is assumed to be a linear 
multiplier of the mean.  The conditional variance is defined as: 
 

 ]|[ iii yV x                      (16.12) 

 

where ]|[ iiyV x  is the variance of iy  given the independent variables. 

 
The conditional variance is then a function of the mean: 

 

 
p
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where  is the dispersion parameter and p  is a constant (usually 1 or 2).   In the case where p  

is 1, the equation simplifies to: 
 

 iii                    (16.14) 

 
This is the NB1 correction.  In the special case where 0 , the variance becomes equal 

to the mean (the Poisson model).  The model is estimated in two steps.  First, the Poisson model 
is fitted to the data and the degree of over- (or under) dispersion is estimated.  The dispersion 
parameter is defined as: 
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where N is the sample size, K is the number of independent variables, iY  is the observed number 

of events that occur in observation (or zone) i, and i̂  is the predicted number of events for 

observation (or zone) i.  The test is similar to an average chi-square in that it takes the square of 

the residuals 2)ˆ( iiy   and divides it by the predicted values, and then averages it by the degrees 

of freedom. The dispersion parameter is a standardized number.  A value greater than 0 indicates 
over-dispersion while a value less than 0 indicates under-dispersion.  A value of 0 indicates 
equidispersion (or the variance equals the mean). The dispersion parameter can also be estimated 
based on the deviance. 
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 In the second step, the Poisson standard error is multiplied by the square root of the 
dispersion parameter to produce an adjusted standard error: 
     

 ̂ SESEadj                                  (16.16) 

 
The new standard error is then used with the t-test to produce an adjusted t-value.  This 

adjustment is found in most Poisson regression packages using a Generalized Linear Model 
(GLM) approaches (McCullagh and Nelder, 1989, 200).  Cameron & Trivedi (1998) have shown 
that this adjustment produces results that are virtually identical to that of the negative binomial, 
but involving fewer assumptions.  CrimeStat includes an NB1 correction and is called Poisson 
with linear correction.  
 
 Example of Poisson Model with Linear Dispersion Correction (NB1) 
 
 Table 16.2 shows the results of running the Poisson model with the linear dispersion 
correction. The likelihood statistics are the same as for the simple Poisson model (Table 16.1) 
and the coefficients are identical.  The dispersion parameter, however, has now been adjusted to 
be 1.0.  This affects the standard errors, which are now greater.  In the example, the two 
independent variables are still statistically significant, but the Z-values are smaller.  
 

Poisson-Gamma (Negative Binomial) Regression 
 
 A second type of dispersion correction involves a mixed function model.  Instead of 
simply adjusting the standard error by a dispersion correction, different assumptions are made for 
the mean and the variance (dispersion) of the dependent variable.  In the negative binomial 

model, the number of observations )( iY  is assumed to follow a Poisson distribution but the mean

)( i  follows a Gamma distribution (Lord, 2006; Cameron & Trivedi, 1998, 62-63; Venables & 

Ripley, 1997, 242-245).  This is frequently called an NB2 model. 
 
 Mathematically, the negative binomial distribution is one derivation of the binomial 
distribution in which the sign of the function is negative, hence the term negative binomial (for 
more information on the derivation, see Wikipedia, 2010).  For our purposes, it is defined as a 
mixed distribution with a Poisson mean and a one parameter Gamma dispersion function having 
the form: 
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Table 16.2: 
 Predicting Burglaries in the City of Houston: 2006 

Poisson with Linear Dispersion Correction Model (NB1) 
(N= 1,179 Traffic Analysis Zones) 

 
DepVar:                              2006 BURGLARIES 
N:                                    1,179 
Df:                                   1,175 
Type of regression model:            Poisson with linear dispersion correction  
Method of estimation:        Maximum likelihood 
 

Likelihood statistics 
 Log-likelihood:                      -13,639.5 
 AIC:                                 27,287.1 
 BIC/SC :                             27,307.4 
 Deviance:    12,382.5 p:  0.0001 
 Pearson Chi-square:   12,402.2 p:  0.0001 
 Model error estimates 
 Mean absolute deviation:            16.0 

1st (highest) quartile:        33.9 
 2nd quartile:         7.3 
 3rd quartile:         8.8 
 4th (lowest) quartile:        13.9 
 Mean squared predicted error:       714.2 

1st (highest) quartile:        2,351.8 
 2nd quartile:         203.7 
 3rd quartile:         99.8 
 4th (lowest) quartile:        206.7 
 Dispersion tests 
 Adjusted deviance:                 10.5 P: 0.001 
 Adjusted Pearson Chi-Square:    10.6 p: 0.001 
 Dispersion multiplier:                1.0 p: n.s.  Inverse dispersion multiplier:      1.0 
 
------------------------------------------------------------------------------------------------------------------------------- 
Predictor  DF Coefficient Stand Error  Tolerance VIF   Z-value     p 
INTERCEPT  1  2.87452   0.062     -    -     46.26     0.001 
HOUSEHOLDS  1  0.00059   0.00002   0.994   1.006     31.84     0.001 
MEDIAN  
HOUSEHOLD 
INCOME  1 -0.000009   0.000001   0.994  1.006     -6.24    0.001 
------------------------------------------------------------------------------------------------------------------------------- 
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where   
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and where θi is a function of a one-parameter gamma distribution where the parameter, τ, is 
greater than 0 (ignoring the subscripts): 
 

 

1
1 1

1 1 1

( ) ( )
( / , )

( ) ( 1)

y
y

h y
y


   

    


 

  

    
             

                  (16.21) 

 
 The model is used traditionally with integer (count) data though it can also be applied to 
continuous (real) data.  Sometimes the integer model is called a Pascal model while the real 
model is called a Polya model (Wikipedia, 2010; Springer, 2010).   Boswell and Patil (1970) 
argued that there are at least 12 distinct probabilistic processes that can give rise to the negative 
binomial function including heterogeneity in the Poisson intensity parameter, cluster sampling 
from a population which is itself clustered, and the probabilities that change as a function of the 
process history (i.e., the occurrence of an event breeds more events). The interpretation we adopt 
here is that of a heterogeneous population with different observations coming from different sub-
populations, and the Gamma distribution is the mixing variable. 
 

Because both the Poisson and Gamma functions belong to the single-parameter 
exponential family of functions and are convex in shape (increasing smoothly up to a peak and 
then decreasing smoothly), they can be solved by the maximum likelihood method.  The mean is 
always estimated as a Poisson function.  However, there are slightly different parameterizations 
of the variance function (Hilbe, 2008).  In the original derivation by Greenwood and Yule 
(1920), the conditional variance was defined as: 

 
ωi =  μi + μi

2/ ψ                  (16.22) 
 
whereupon ψ (Psi) became known as the inverse dispersion parameter (McCullagh & Nelder, 
1989).    
 

However, in more recent years, the conditional variance was defined within the 
Generalized Linear Models tradition as a direct adjustment of the squared Poisson mean, namely:  

 



16.17 

 ωi =  μi + τ μi
2                 (16.23) 

 
where the variance is now a quadratic function of the Poisson mean (i.e., p is 2 in formula 16.13) 
and τ is called the dispersion multiplier.   This is the formulation proposed by Cameron & 
Trivedi (1998; pp. 62-63).  That is, it is assumed that there is an unobserved variable that affects 
the distribution of the count so that some observations come from a population with higher 
expected counts whereas others come from a population with lower expected counts.  The model 
then has a Poisson mean but with a ‘longer tail’ variance function. The dispersion parameter, τ, is 
directly related to the amount of dispersion. This is the interpretation that we will use in the 
chapter and in CrimeStat. 
 
 Formally, we can write the negative binomial model as a Poisson-gamma mixture form: 

  

 )(~| iii Poissony                           (16.24) 

 

The Poisson mean i  is organized as: 

 
 )exp( i

T
ii   βx                          (16.25) 

 
where exp() is an exponential function, β  is a vector of unknown coefficients for the k covariates 

plus an intercept, and i  is the model error independent of all covariates. The )exp( i  is 

assumed to follow the gamma distribution with a mean equal to 1 and a variance equal to 
 /1  where   is a parameter that is greater than 0 (Lord, 2006; Cameron & Trivedi, 1998). 

 
For a negative binomial generalized linear model, the deviance can be computed the 

following way: 
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For a well-fitted model the deviance should be approximately 2  distributed with 1KN  

degrees of freedom (McCullagh and Nelder, 1987).   If )1/(  KND  is close to 1, we generally 

conclude that the model’s fit is satisfactory. 
 
 Example 1 of Negative Binomial Regression 

 
 To illustrate, Table 16.3 presents the results of the negative binomial model for Houston 
burglaries. Even though the individual coefficients are similar, the likelihood statistics indicate 



16.18 

that the model fit the data better than the Poisson with linear correction for over-dispersion.  The 
log-likelihood is higher, the AIC and BIC/SC statistics are lower as are the deviance and the 
Pearson Chi-square statistics.    
 
 On the other hand, the model error is higher than for the Poisson and Poisson NB1 
models, both for the mean absolute deviation (MAD) and the mean squared predicted error 
(MSPE).  Accuracy and precision need to be seen as two different dimensions for any method, 
including a regression model (Jessen, 1979, 13-16).  Accuracy is ‘hitting the target’, in this case 
maximizing the likelihood function.  Precision is the consistency in the estimates, again in this 
case the ability to replicate individual data values.  A normal model will often produce lower  
overall error because it minimizes the sum of squared residual errors though it rarely will 
replicate the values of the records with high values and often does poorly at the low end.   
 

For this reason, we say that the negative binomial is a more accurate model though not 
necessarily a more precise one.  To improve the precision of the negative binomial, we would 
have to introduce additional variables to reduce the conditional variance further.  Clearly, 
residential burglaries are associated with more variables than just the number of households and 
the median household income (e.g., ease of access into buildings, lack of surveillance on the 
street, having easy contact with individuals willing to distribute stolen goods).  

 
Nevertheless, the negative binomial is a better model than the Poisson and certainly the 

normal, Ordinary Least Squares.  It is theoretically sounder and does better with highly skewed 
(over-dispersed) data.  In Appendix C, Lord and Park present a more formal presentation of the 
model. 

 
Example 2 of Negative Binomial Regression with Highly Skewed Data 

 
 To illustrate further, the negative binomial is very useful when the dependent variable is 
extremely skewed.   Figure 16.4 show the number of crimes committed (and charged for) by 
individual offenders in Manchester, England in 2006.  The X-axis plots the number of crimes 
committed while the Y-axis plots the number of offenders.  Of the 56,367 offenders, 40,755 
committed one offence during that year, 7,500 committed two offences, and 3,283 committed 
three offences.  At the high end, 26 individuals committed 30 or more offences in 2006 with one 
individual committing 79 offences.  The distribution is very skewed. 
 

A negative binomial regression model was set up to model the number of offences 
committed by these individuals as a function of conviction for previous offence (prior to 2006), 
age, and distance that the individual lived from the city center.  Table 16.4 shows the results.  
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Table 16.3: 
Predicting Burglaries in the City of Houston: 2006 

MLE Negative Binomial Model 
(N= 1,179 Traffic Analysis Zones) 

 
DepVar:                              2006 BURGLARIES 
N:                                   1,179 
Df:                                  1,175 
Type of regression model:           Poisson with Gamma dispersion 
Method of estimation:        Maximum likelihood 
 

Likelihood statistics 
 Log-likelihood:                      -4,430.8 
 AIC:                                 8,869.6 
 BIC/SC :                             8,889.9 
 Deviance:    1,390.1  p:  0.0001 
 Pearson Chi-square:   1,112.7  p:  n.s. 
 Model error estimates 
 Mean absolute deviation:            39.6 

1st (highest) quartile:        124.1 
 2nd quartile:         19.4 
 3rd quartile:         6.2 
 4th (lowest) quartile:        8.9 
 Mean squared predicted error:       62,031.2 

1st (highest) quartile:        242,037.1 
 2nd quartile:         6,445.8 
 3rd quartile:         118.3 
 4th (lowest) quartile:        154.9 
  Dispersion tests 
 Adjusted deviance:                   1.2 p:  n.s 
 Adjusted Pearson Chi-Square:     0.9 p:  n.s. 
 Dispersion multiplier:               1.5 p:  n.s.  Inverse dispersion multiplier:  0.7 
 
Predictor  DF Coefficient Stand Error  Tolerance VIF   Z-value     p 
-------------------------------------------------------------------------------------------------------------------------------
INTERCEPT  1  2.3210    0.083      -    -    27.94     0.001 
HOUSEHOLDS  1  0.0012    0.00007     0.994   1.006   17.66     0.001 
MEDIAN  
HOUSEHOLD 
INCOME  1 -0.00001  0.000002   0.994   1.006    -5.13     0.001 
------------------------------------------------------------------------------------------------------------------------------- 

  



Figure 16.4:
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Table 16.4: 

Number of Crimes Committed in Manchester in 2006 
Negative Binomial Model 

(N= 56,367 Offenders) 
 
DepVar:                       NUMBER OF CRIMES COMMITTED IN 2006 
  N:                              56,367 
  Df:                             56,362 
  Type of regression model:      Poisson with Gamma dispersion 
  Method of estimation:   Maximum likelihood 
 
 Likelihood statistics 
  Log-likelihood:                -89,103.7 
  AIC:                            178,217.4 
  BIC/SC:                        178,262.1 
  Deviance:    36,616.6 p: n.s. 
  Pearson Chi-square:   80,950.2 p: 0.0001 
 Model error estimates 
  Mean absolute deviation:     0.93 

1st (highest) quartile:  1.9 
 2nd quartile:   0.7 
 3rd quartile:   0.6 
 4th (lowest) quartile:  0.6 
  Mean squared predicted error:  3.90 

1st (highest) quartile:  13.8 
 2nd quartile:   0.7 
 3rd quartile:   0.6 
 4th (lowest) quartile:  0.6 
  Dispersion tests 
  Adjusted deviance:             0.6 p: n.s. 
  Adjusted Pearson Chi-Square:   1.4 p: n.s. 
  Dispersion multiplier:         0.2 p : n.s.   Inverse dispersion multiplier: 6.2 
 
Predictor  DF Coefficient Stand Error Tolerance Z-value   p 
------------------------------------------------------------------------------------------------------------------------------- 
INTERCEPT  1  0.509    0.012      -   41.90  0.001 
DISTANCE  
FROM 
CITY CENTER 1 -0.022    0.003     0.999   -6.74  0.001 
PRIOR OFFENCE 1  0.629    0.008     0.982   80.24  0.001 
AGE OF  
OFFENDER  1 -0.012    0.0003     0.981  -35.09  0.001 
------------------------------------------------------------------------------------------------------------------------------- 
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 The model was discussed in a recent article (Levine & Lee, 2013).  The closer an 
offender lives to the city center, the greater than number of crimes committed.  Also, younger 
offenders committed more offences than older offenders.  However, the strongest variable is 
whether the individual had an earlier conviction for another crime.  Offenders who have 
committed previous offences are more likely to commit more of them again.  Crime is a very 
repetitive behavior! 
 
 The likelihood statistics indicates that the model was reasonably closely.  The likelihood 
statistics were better than that of a normal OLS and a Poisson NB1 models (not shown).  The 
model error was also slightly better for the negative binomial.  For example, the MAD for this 
model was 0.93 compared to 0.95 for the normal and 0.93 for the Poisson NB1.  The MSPE for 
this model was 3.90 compared to 3.93 for the normal and also 3.90 for the Poisson NB1.  The 
negative binomial and Poisson models produce very similar results because, in both cases, the 
means are modeled as Poisson variables.  The differences are in the dispersion statistics.   For 
example, the standard error of the four parameters (intercept plus three independent variables 
was 0.012, 0.003, 0.008, and 0.0003 respectively for the negative binomial compared to 0.015, 
0.004, 0.010, and 0.0004 for the Poisson NB1 model.  In general, the negative binomial will fit 
the data better when the dependent variable is highly skewed and will usually produce lower 
model error. 
 
 Advantages of the Negative Binomial Model 
 
 The main advantage of the negative binomial model over the Poisson and Poisson with 
linear dispersion correction (NB 1) is that it incorporates the theory of Poisson but allows more 
flexibility in that multiple underlying distributions may be operating.  Further, mathematically it 
separates out the assumptions of the mean (Poisson) from that of the dispersion (Gamma) 
whereas the Poisson with linear dispersion correction only adjust the dispersion after the fact 
(i.e., it determines that there is over- or under-dispersion and then adjusts it).  This is neater from 
a mathematical perspective.  Separating the mean from the dispersion can also allow alternative 
dispersion estimates to be modeled, such as the lognormal (Lord, 2006).   This is very useful for 
modeling highly skewed data. 

 
 Disadvantages of the Negative Binomial Model 
 
 The biggest disadvantage is that the constancy of sums is not maintained.  Whereas the 
Poisson model (both “pure” and with the linear dispersion correction) maintains the constancy of 
the sums (i.e., the sum of the predicted values equals the sum of the input values), the negative 
binomial does not.  Usually, the degree of error in the sum of the predicted values is not far from 
the sum of the input values.  But, occasionally substantial distortions are seen. 
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 A second disadvantage is that the negative binomial model cannot handle under-
dispersion.  There are crime data sets that we have seen which show under-dispersion.  For those, 
one needs another type of model.  In Levine and Canter (2011), a Poisson with linear correction 
was used to adjust the standard errors (essentially, making them smaller).  But, better methods 
need to be developed. 

 
 A final disadvantage of the negative binomial is related to the small sample size and low 
sample mean bias. It has been shown that the dispersion parameter of NB2 models can be 
significantly biased or misestimated when not enough data are available for estimating the model 
(Lord, 2006).  For that, a Poisson-lognormal model is a better solution. 
 
 Alternative Poisson Regression Models 
 
 There are a number of variations of these involving different assumptions about the 
dispersion term, such as a lognormal function.  There are also a number of different Poisson-type 
models including the zero-inflated Poisson (or ZIP; Hall, 2000), the Generalized Extreme Value 
family (Weibul, Gumbel and Fréchet), the lognormal function (see NIST 2004 for a list of 
common non-linear functions), and the Negative binomial-Lindley (Lord and Greedipally, 2011). 
 
 There are also alternative methods than maximum likelihood for estimating the likely 
value of a count given a set of independent predictors.  In Chapter 17, we will examine several 
other approaches to estimating the Poisson model and will develop several alternative Poisson 
models. 
 

Likelihood Ratios 
 
 One test that we have not implemented in the regression I module is the likelihood ratio 
because it is so simple.  A likelihood ratio is the ratio of the log-likelihood of one model to that 
of another.  For example, a Poisson-Gamma model run with three independent variables can be 
compared with a Poisson-Gamma model with two independent variables to see if the third 
independent variable significantly adds to the prediction. 
 
 The test is very simple. Let LC be the log-likelihood of the comparison model and let LB 
be the log-likelihood of the baseline model (the model to which the comparison model is being 
compared).  Then, 
 
 LR = 2(LC – LB)                (16.27) 
 

 LR is distributed as a 2  statistic with K  degrees of freedom where K is the difference in 

the number of parameters estimated between the two models including the intercepts.  In the 
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example above, K is 1 since a model with three independent variables plus an intercept (d.f. = 4) 
is being compared with a model with two independent variables plus an intercept (d.f.=3). 
 

Limitations of the Maximum Likelihood Approach 
 
 The functions considered up to this point are part of the single-parameter exponential 
family of functions where the function is smooth and convex.  Because of this, maximum 
likelihood estimation (MLE) can be used.  However, there are more complex functions that are 
not part of this family.  Also, some functions come from multiple families and are, therefore, too 
complex to solve for a single maximum.  They may have multiple ‘peaks’ for which there is not 
a single optimal solution.  For these functions, a different approach has to be used. 
 

Also, one of the criticisms leveled against maximum likelihood estimation (MLE) in 
general is that the approach overfits data.  That is, it finds the values of the parameters that 
maximize the joint probability function.  This is similar to the old approach of fitting a curve to 
data points with higher-order polynomials.  While one can find some combination of higher-
order terms to fit the data almost perfectly, such an equation has no theoretical basis nor cannot 
easily be explained.  Further, such an equation does not usually do very well as a predictive tool 
when applied to a new data set. 
 

MLE has been seen as analogous to this approach.   By finding parameters that maximize 
the joint probability density distribution, the approach may be fitting the data too tightly.  The 
original logic behind the AIC and BIC/SC criteria were to penalize models that included too 
many variables (Findley, 1993).  However, these corrections only partially adjust the model.  It is 
still possible to overfit a model with MLE.  Radford (2006) has suggested that, in addition to a 
penalty for too many variables, that the gradient assent in a maximum likelihood algorithm be 
stopped before reaching the peak.  This would require modifying the MLE algorithm 
substantially. 

 
Further, Nannen (2003) has argued that overfitting creates a paradox because as a model 

fits the data better and better, it will do worse on other datasets to which it is applied for 
prediction purposes.  In other words, it is better to have a simpler, but more robust, model than 
one that closely models one data set.  Probably the biggest criticism against the MLE approach is 
that it underestimates the sampling errors by, again, overfitting the parameters (Husmeier & 
McGuire, 2002).  

 
Instead, we will now examine a method that overcomes some of these difficulties, the 

Markov Chain Monte Carlo (MCMC) approach.  Because the algorithm samples from a larger 
space rather than maximizes a function per se, it has the ability to find solutions to very complex 
problems for which the MLE approach is not appropriate.  Chapter 17 presents this approach. 
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