

Table of Contents

Major Chapter Headings	i
Acknowledgments	xiv
License Agreement and Disclaimer	xviii

Major Chapter Headings

Part I: Program Overview

Chapter 1: Introduction to CrimeStat IV	1.1
By Ned Levine	
Uses of Spatial Statistics in Crime Analysis	1.1
The CrimeStat IV Spatial Statistics Program	1.2
Statistical Routines	1.3
Program Requirements	1.7
Installing the Program	1.9
Step-by-Step Instructions	1.16
Options	1.16
Short Applications	1.16
Online Help	1.16
References	1.18
Chapter 2: Quickguide to CrimeStat IV	2. 1
By Ned Levine	
Introduction	2.1
Data Setup	2.2
Primary File	2.2
Secondary File	2.6
Reference File	2.8
Measurement Parameters	2.10
Spatial Description	2.15
Spatial Distribution	2.15
Spatial Autocorrelation	2.20
Distance Analysis I	2.30
Distance Analysis II	2.38
Hot Spot Analysis	2.40
Hot Spot Analysis I	2.40
Hot Spot Analysis II	2.50
Hot Spot Analysis of Zones	2.56
Spatial Modeling I	2.66

Interpolation I	2.66
Interpolation II	2.73
Space-time Analysis	2.80
Journey-to-crime	2.88
Bayesian Journey-to-crime	2.96
Spatial Modeling II	2.111
Regression I Module	2.111
Regression II Module	2.128
Discrete Choice I	2.130
Discrete Choice II	2.142
Time Series Forecasting	2.145
Crime Travel Demand	2.151
Crime Travel Demand Data Preparation	2.152
Project Directory	2.153
Trip Generation	2.155
Trip Distribution	2.174
Mode Split	2.196
Network Assignment	2.206
File Worksheet	2.214
Options	2.216
Chapter 3: Entering Data into CrimeStat IV	3.1
By Ned Levine	
Organization of Program into Tabs	3.1
Required Data	3.6
Primary File	3.11
Secondary File	3.19
Reference File	3.21
Measurement Parameters	3.29
Distance Calculations	3.33
Saving Parameters	3.37
Statistical Routines and Output	3.37
A Tutorial with a Sample Data Set	3.38
References	3.44
Endnotes	3.46
Attachment	3.52

Part II: Spatial Description

Chapter 4: Centrographic Statistics	4.1
By Ned Levine	
Centrographic Statistics	4.1
Mean Center	4.1
Weighted Mean Center	4.4
Median Center	4.6
Center of Minimum Distance	4.12
Standard Deviations of the X and Y Coordinates	4.14
Standard Distance Deviation	4.14
Standard Deviational Ellipse	4.17
Geometric Mean	4.20
Harmonic Mean	4.23
Average Density	4.26
Output Files	4.26
Examples of Centrographic Statistics	4.30
Directional Mean and Variance	4.34
Convex Hull	4.45
References	4.49
Endnotes	4.51
Attachments	4.54
Chapter 5: Spatial Autocorrelation Statistics By Ned Levine	5.1
Spatial Autocorrelation	5.1
Indices of Spatial Autocorrelation	5.3
Moran's "I" Statistic	5.5
Geory's "C" Statistic	5.10
Getis-Ord "G" Statistic	5.16
Moran Correlogram	5.10
Geary Correlogram	5 34
Getis-Ord Correlogram	5 35
References	5 39
Attachments	5.39

Chapter 6: Distance Analysis I and II

By Ned Levine

Distance Analysis I	6.1
Nearest Neighbor Index	6.1
K-Order Nearest Neighbor	6.8
Linear Nearest Neighbor Index	6.13
Linear K-Order Nearest Neighbor Index	6.20
Ripley's K Statistic	6.22
Assign Primary Points to Secondary Points	6.36
Distance Analysis II	6.41
Distance Matrices	6.41
References	6.44
Attachments	6.45

Part III: Hot Spot Analysis

Chapter 7: Hot Spot Analysis of Points: I 7.1

By Ned Levine

Hot Spots	7.1
Statistical Approaches to the Measurement of 'Hot Spots	7.2
Cluster Routines in CrimeStat	7.7
Mode	7.9
Fuzzy Mode	7.11
Nearest Neighbor Hierarchical Clustering	7.16
Risk-Adjusted Nearest Neighbor Hierarchical Clustering	7.36
References	7.53
Endnotes	7.58
Attachments	7.61
Chapter 8: Hot Spot Analysis of Points: II	8.1
By Richard Block, Carolyn Rebecca Block, & Ned Levine	

Spatial and Temporal Analysis of Crime (STAC)	8.1
K-Means Partitioning Clustering	8.18
Some Thoughts on the Concept of 'Hot Spots'	8.33
References	8.36

6.1

Endnotes	8.39
Attachments	8.41
Chapter 9: Hot Spot Analysis of Zones	9.1
By Ned Levine	
Assigning Point Data to Zones	9.1
Local Indicator of Spatial Association	9.3
Anselin's Local Moran	9.4
Getis-Ord Local "G"	9.16
Zonal Nearest Neighbor Hierarchical Clustering	9.21
References	9.46
Endnotes	9.47
Attachments	9.48

Part IV: Spatial Modeling I

Chapter 10: Kernel Density Interpolation10.1

By Ned Levine

Introduction Kernel Density Interpolation Single Kernel Density Interpolation	10.1
	10.1
	10.13
Dual Kernel Density Interpolation	10.22
Advantages and Limitations of Kernel Density Interpolation	10.34
Conclusion References Endnotes Attachments	10.36
	10.37
	10.40
	10.42
Chapter 11: Head-Bang Interpolation	11.1
By Ned Levine	
Interpolation II Tab	11.1
Head-Bang Statistic	11.1
Interpolated Head-Bang Statistic	11.19
References	11.26

Chapter 12: Space-Time Analysis By Ned Levine	12.1
Measurement of Time in <i>CrimeStat</i>	12.1
Space-Time Interaction	12.1
Knox Index	12.5
Mantel Index	12.9
Spatial-Temporal Moving Average	12.13
Correlated Walk Analysis	12.14
References	12.45
Endnotes	12.47
Attachments	12.48
Chapter 13: Journey-to-Crime Estimation	13.1
By Ned Levine	
Location Theory	13.1
Travel Demand Modeling	13.2
Travel Behavior of Criminals	13.8
Predicting the Location of Serial Offenders	13.11
The CrimeStat Journey-to-crime Routine	13.12
Journey-to-crime Estimation Using Mathematical Functions	13.16
Empirically Estimating a Journey-to-crime Calibration Function	13.38
Journey-to-crime Estimation Using a Calibrated File	13.49
How Accurate are the Methods?	13.61
Confirmation of These Results	13.69
Draw Crime Trips	13.72
References	13.74
Endnotes	13.83
Attachments	13.84
Chapter 14: Bayesian Journey-to-Crime Estimation	14.1
By Ned Levine & Richard Block	
Bayesian Probability	14.1
The Bayesian Journey-to-crime Estimation Module	14.10
Data Preparation for Bayesian Journey-to-crime Estimation	14.10
Bayesian Journey-to-crime Diagnostics	14.16

Which is the Most Accurate and Precise Method?	14.20
Estimate Likely Origin of a Serial Offender	14.30
Probability Filters	14.47
Guidelines for Analysts	14.54
Summary	14.58
References	14.59
Part V: Spatial Modeling II	
Chapter 15: OLS Regression Modeling	15.1
By Ned Levine & Dominique Lord	
Functional Relationships	15.1
Normal Linear Relationships	15.1
Corrections to Violated Assumptions in Normal Linear Regression	15.19
Diagnostic Tests and OLS	15.30
MCMC Version of Normal (OLS)	15.32
References	15.33
Chapter 16: Poisson Regression Modeling	16.1
By Dominique Lord, Ned Levine, & Byung-Jung Park	
Count Data Models	16.1
Poisson Regression	16.1
Poisson Regression with Linear Dispersion Correction	16.13
Poisson-Gamma (Negative Binomial) Regression	16.14
Limitations of the Maximum Likelihood Approach	16.24
References	16.25
Chapter 17: Estimating Complex Models with	
Markov Chain Monte Carlo Simulation	17.1
By Dominique Lord, Ned Levine, Byung-Jung Park, Srinivas Geedipally,	
Haiyan Teng, & Li Shing	
Markov Chain Monte Carlo (MCMC)	
Simulation of Regression Functions	17.1
Risk Analysis	17.26
Issues in MCMC Modeling	17.30

vii

Improving the Performance of the MCMC Algorithm References	17.44 17.53
Chapter 18: Binomial Regression Modeling	18.1
By Ned Levine, Dominique Lord, & Byung-Jung Park	
Introduction	18.1
Generalized Linear Models	18.1
Logistic Model	18.3
Logit Regression	18.12
Probit Model	18.18
Conclusion	18.21
References	18.26
Chapter 19: Spatial Regression Modeling	19.1
By Ned Levine, Dominique Lord, Byung-Jung Park, Srinivas Geedipally,	
Haiyan Teng, & Li Sheng	
Spatial Regression Modeling	19.1
MCMC Normal-CAR Model	19.9
MCMC Normal-SAR Model	19.11
MCMC Poisson-Gamma-CAR Model	19.12
MCMC Poisson-Gamma-SAR Model	19.13
MCMC Poisson-Lognormal-CAR/SAR Model	19.13
MCMC Binomial-Logit-CAR/SAR Model	19.14
Spatial Weights Function	19.14
Estimation Procedures for Spatial Models	19.15
Examples of Spatial Regression Modeling	19.19
Caveat	19.33
Summary	19.34
References	19.35
Chapter 20: The CrimeStat Regression Module	20.1
By Ned Levine, Dominique Lord, Byung-Jung Park, Srinivas Geedipally,	
Haiyan Teng, Li Sheng, & Ian Cahill	
The CrimeStat Regression Module	20.1
Regression I Module	20.1

Output	20.11
Diagnostics Relevant for Spatial Regression	20.21
Regression II Module	20.22
Conclusion	20.25
Chapter 21: Discrete Choice Modeling	21.1
By Wim Bernasco & Richard Block	
Introduction	21.1
Discrete Choice Framework	21.3
Multinomial and Conditional Logit	21.5
Data Structures	21.7
The Multinomial Logit Model	21.7
The Conditional Logit Model	21.19
Conclusion	21.26
References	21.28
Attachments	21.30
Chapter 22: The CrimeStat Discrete Choice Module	22.1
By Wim Bernasco, Richard Block, Ned Levine & Ian Cahill	
Discrete Choice I Module	22.1
Create Data set for Conditional Discrete Choice Model	22.2
Example of Running a Multinomial Logit Model	22.16
Example of Creating and Running a Conditional Logit Model	22.16
Discrete Choice II Module	22.27
Make Prediction	22.27
Chapter 23: Time Series Forecasting	23.1
By Wil Gorr & Andreas M. Olligschlaeger	
Introduction	23.1
Time Series Data	23.2
Extrapolative Time Series Forecasting	23.4
Classical Decomposition: Seasonality	23.15
The Detection Problem	23.16
Conclusions	23.20
References	23.26

Chapter 24: The *CrimeStat* Time Series Forecasting Module 24.1

By Wil Gorr & Andreas M. Olligschlaeger

Introduction	24.1
Rationale of the Module	24.1
Overview of the Module	24.2
Data Preparation for Time Series Forecasting	24.3
Running the Time Series Forecasting module	24.9
Output	24.9
Guidelines for Running Forecast Models	24.16
Counterfactual Detection v. Forecasting	24.18
Example with Pittsburgh Month Crime Data	24.18
Conclusion	24.19
References	24.22

Part VI: Crime Travel Demand Modeling

Chapter 25: Overview of Crime Travel Demand Modeling By Ned Levine	25.1
Travel Demand Forecasting	25.1
Need for More Complex Travel Model of Crime	25.2
Crime Travel Demand Framework	25.5
Crime Travel Definitions	25.8
The CrimeStat Travel Demand Module	25.12
Crime Travel Demand v. Journey-to-Crime	25.14
Models v. Description	25.15
Uses of a Crime Travel Demand Model	25.17
References on Travel Demand Modeling	25.20
References	25.22
Chapter 26: Data Preparation for	
Crime Travel Demand Modeling	26.1
By Ned Levine	
Choice of a Zonal System	26.1
Obtaining Crime Data	26.9
Developing a Predictive Model	26.21

ing a Predictive Model	26.21

Where to obtain these data?	26.28
Creating an Integrated Data Set	26.29
Conclusion	26.40
References	26.41
Chapter 27: Trip Generation Modeling	27.1
By Ned Levine	
Background	27.1
Modeling Trip Generation	27.2
Approaches Toward Trip Generation Modeling	27.6
Diagnostic Tests	27.20
Available Regression Models	27.28
Adding Special Generators	27.29
Adding External Trips	27.30
Balancing Predicted Origins and Predicted Destinations	27.31
Summary of the Trip Generation Model	27.32
The CrimeStat Trip Generation Model	27.32
Calibrate Model	27.34
Make Trip Generation Prediction	27.38
Balance Predicted Origins & Destinations	27.40
Example of the Trip Generation Model	27.41
Strengths and Weaknesses of Regression Modeling of Trips	27.64
Conclusion	27.66
References	27.67
Chapter 28: Trip Distribution Modeling	28.1
By Ned Levine, Richard Block, Dan Helms, & Phil Canter	
Theoretical Background	28.1
The Gravity Model	28.4
Travel Impedance	28.8
Alternative Model: Intervening Opportunities	28.14
Method of Estimation	28.15
CrimeStat IV Trip Distribution Module	28.16
Calibrate Impedance Function	28.24
Setup of Origin-Destination Model	28.28
Running the Origin-Destination Model	28.42

Comparing Observed & Predicted Trips	28.49
Uses of Trip Distribution Analysis	28.73
References	28.76
Attachments	28.79
Chapter 29: Mode Split Modeling	29.1
By Ned Levine	
Theoretical Background	29.1
Utility of Travel and Mode Choice	29.1
Tools for Estimating Mode Split in CrimeStat	29.11
Relative Accessibility	29.11
CrimeStat IV Mode Split Tools	29.28
Usefulness of Mode Split Modeling of Crime Trips	29.37
Limitations to the Mode Split Methodology for Crime Analysis	29.41
Conclusions	29.43
References	29.44
Chapter 30: Network Assignment	30.1
By Ned Levine	
Theoretical Background	30.1
Networks	30.2
Shortest Path Algorithms	30.9 30.30 30.32
Routine Algorithms	
The CrimeStat Network Assignment Module	
Modeling Network Assignment of Crime Types	30.45
Uses of Network Assignment of Crime	30.45
Conclusion	30.48 30.49
References	
Attachments	30.50
Chapter 31: Case Studies in Crime Travel Demand Modeling I:	
Travel Patterns of Chicago Robbery Offenders	31.1
By Richard Block	
Case Study I: Travel Patterns of Chicago Robbery Offenders	31.1
Data for the Chicago Study	31.4

Trip Generation	31.6
Trip Distribution	31.8
Mode Split	31.14
Network Assignment	31.14
Conclusions	31.22
References	31.25
Chapter 32: Case Studies in Crime Travel Demand Modeling II:	
Application of Travel Demand Behavior Model on	
Crime Data from Las Vegas, Nevada	32.1
By Dan Helms	
Introduction	32.1
The Las Vegas Metropolitan Area	32.2
Source Data Provenance and Organization	32.3
Trip Generation	32.14
Trip Distribution	32.20
Mode Split	32.27
Network Assignment	32.27
Modeling Different Crime Types	32.28
Conclusions	32.32
References	32.38
CrimeStat IV References	R-1
Appendix A: Some Notes on the Statistical Comparison	
of Two Samples	A-1
By Ned Levine	
Appendix B: Ordinary Least Squares and Poisson Regression Models	B-1
By Luc Anselin	
Appendix C: Negative Binomial Regression Models	
and Estimation Methods	C-1
By Dominique Lord & Byung-Jung Park	

Acknowledgments

CrimeStat IV (version 4.0) was developed under the direction of Dr. Ned Levine of *Ned Levine & Associates*, Houston, TX with Grant 2005-IJ-CX-K037 from the Office of Science and Technology, *National Institute of Justice* (NIJ), Washington, DC. The developer would like to thank the many individuals who contributed to this program over the years since its inception:

- 1. Ms. Haiyan Teng of Houston, TX, the primary programmer for versions 2.0 through 4.0. Her high level of programming competence and mathematical expertise was essential for the successful completion of the crime travel demand routines, the Bayesian Journey to Crime routine, the Head-Bang routine, and the Markov Chain Monte Carlo regression routines as well as ensuring that all new routines were properly integrated into the main program. She is a co-author of three chapters.
- 2. Mr. Ron Wilson, formerly project manager at the Mapping and Analysis for Public Safety Program (MAPS) at NIJ and currently a researcher at the U.S. Department of Housing and Urban Development, who supported the project through much of this development and provided valuable feedback on the new routines and their utility. He also has been instrumental in pushing for the development of CrimeStat libraries that will be released separately later this year.
- 3. Mr. Joel Hunt, current project manager at the Mapping and Analysis for Public Safety Program (MAPS) at NIJ. He took over administrative management of the project towards for NIJ towards the end of the development but has been supportive throughout.
- 4. Professor Richard Block of Loyola University in Chicago has contributed as a methodological and criminal justice advisor to the project since early in its development. He has played a critical role in conducting quality control tests and is the author of one chapter and the co-author of five chapters.
- 5. Dr. Shaw-pin Miaou of Transmidas Consulting Services in College Station, TX provided detailed instructions for building the MCMC Poisson-Gamma and Poisson-Gamma-CAR regression models. Ms. Haiyan Teng and Dr. Li Sheng converted the instructions into C++ and wrote numerical libraries for it.
- 6. Dr. Dominique Lord of Texas A & M University in College Station, TX provided detailed technical help on the Poisson and binomial maximum likelihood and

MCMC methods. He is also the co-author of six chapters on the regression module.

- 7. Dr. Byung-Jung Park of the Korea Transport Institute in Goyang, South Korea provided mathematical clarification of the models and also has developed alternative dispersion and spatial autoregressive functions. He is also the co-author of five chapters.
- 8. Professor Wim Bernasco of the Netherlands Institute for the Study of Crime and Law Enforcement and the Department of Spatial Economics, Faculty of Economics and Business Administration, VU University Amsterdam, Netherlands, for designing the discrete choice module and is the co-author of chapters 21 and 22.
- 9. Professor Wil Gorr of Carnegie-Mellon University in Pittsburgh, PA, for designing the time series forecasting module and is the co-author of chapters 23 and 24.
- 10. Dr. Andreas Olligschlaeger of TruNorth Data Systems, Inc. of Baden, PA for programming the time series forecasting module. He is the co-author of chapters 23 and 24.
- 11. Professor Shashi Shekhar of the University of Minnesota in Minneapolis for supervising the conversion of CrimeStat II routines into libraries.
- 12. Mr. Ian Cahill of Cahill Software, Edmonton, Alberta for providing OLS, Poisson, negative binomial, and multinomial regression maximum likelihood code, based on his MLE++ software package. <u>http://www.magma.ca/~cahill</u>. The code forms the engine of the maximum likelihood routines though additional capabilities have been added. He is a co-author on two chapters.
- 13. Dr. Srinivas Geedipally of the Texas Transportation Institute, Dallas, TX, for developing the MCMC version of the normal distribution along with the spatial autocorrelation variants. He is a co-author on three chapters.
- 14. Dr. Li Sheng, of Houston, TX helped Ms. Teng in programming the MCMC routines. In particular, he created a numerical library that allowed the algorithms to run much faster. He is a co-author on three chapters.

- 15. Dr. David Wong of George Mason University for providing advice on the Getis-Ord "G" statistic.
- 16. Mr. Daniel Helms of Scytale Consulting, Reston, VA, served as a criminal justice advisor to the project and played an important role in testing the crime travel demand routines that was developed in version 3.
- 17. Mr. Long Doan of *Doan Consulting*, Falls Church, VA was the original programmer for the project. Mr. Doan's brilliance in programming was essential to the development of the initial program.
- 18. Professor Luc Anselin of the University of Illinois at Urbana-Champaign provided technical advice and documentation on the regression models used in the crime travel demand model that was developed in version 3.
- 19. Professor Peter Stopher of the University of Sidney in Australia provided technical advice on the crime travel demand model developed in version 3.
- 20. Professor Luc Anselin of Arizona State University, Tempe, AZ, provided technical advice on the OLS and Poisson regression models.
- 21. Mr. Phil Canter, formerly of the *Baltimore County Police Department*, Towson, MD, has been with the project since its inception. For this round, he provided support and data for analysis.
- 22. Ms. Sandra Wortham of *Wortham Design*, Wilmington, DE designed the graphical icons used in the program.
- 23. The GNU project library for providing F-test and t-test code. <u>http://www.gnu.org</u>.
- 24. Dr. Carolyn Rebecca Block of the Illinois Criminal Justice Information Authority for providing the STAC routine.
- 25. All the other individuals from the MAPS unit who have supported the project in earlier stages: for the third version, Ms. Debra Stoe; for the second version, Ms. Elizabeth Groff of the Institute of Law and Justice, Mr. Eric Jefferis of the University of Akron, and Professor Robert Langworthy of the University of Central Florida, Orlando, FL; and, for the first version, Ms. Cindy Mamalian and Dr. Nancy LaVigne of the Urban Institute.

- 26. Ms. Patsy Lee of the Greater Manchester Police Department, Manchester, England, for providing crime data on Manchester.
- 27. To Dr. Alan Robertson and Mr. Barry Fosberg of the Houston Police Department for providing crime data on Houston;
- 28. To the individuals of the Baltimore Metropolitan Council who provided network and other data on both Baltimore County and the City of Baltimore, in particular Jacqueline Zee, Matt de Rouville, and Gene Bandy. Thanks also to Alan Clark of the Houston-Galveston Area Council for making available data on Houston motor vehicle crashes.
- 29. To individuals who have provided detailed feedback and information for this and previous versions of *CrimeStat*: Professor Eric Renshaw of the University of Strathclyde in Glasgow, Mr. John DeVoe of Siebel Systems, Professor Jim LeBeau of Southern Illinois University, Mr. Bryan Hill of the Glendale (Arizona) Police Department, Professor Karl Kim of the University of Hawaii, Mr. Luben Dimov of Louisiana State University, Mr. Weijie Zhou of the Houston-Galveston Area Council, and Mr. Martin Hittleman of Valley Community College in Los Angeles.
- 30. To the individuals who provided example applications for the manual: Renato Assunção, Cláudio Beato, Bráulio Silva of the Federal University of Minas Gerais in Belo Horizonte, Brazil; Daniel Bibel of the Massachusetts State Police; Gilberto Câmara, Silvana Amaral, Antônio Miguel V. Monteiro, and José A. Ouintanilha of the Instituto Nacional de Pesquisas Espaciais in Brazil; Spencer Chainey of InfoTech Enterprises Europe in London, England; Richard Crepeau of Appalachian State University; Jaishankar Karuppannan of the University of Madras in Chepauk, India; Yongmei Lu of Southwest Texas State University; David McGrath of the Johnstown Castle Research Centre in Wexford, Ireland; Nathalie Pavy and Jean Bousquet of Laval University of Quebec; Dietrich Oberwittler and Marc Wiesenhütter of the Max Planck Institute for Foreign and International Criminal Law in Freiburg, Germany; Derek Paulsen of Appalachian State University; Gaston Pezzuchi of the Buenos Aires Province Police Force; Mike Saweda of the University of Ottawa; Takahito Shimada of the National Police Agency in Chiba, Japan; Daisy Smith and Steph Winstanley of the Greater Manchester Police Department; Brent Snook, Paul Taylor & Craig Bennell of the University of Liverpool, England; Matthew Stone of the California Department of Health Services, Chaosheng Zhang of the National University of Ireland in

Galway, Ireland; Marta A. Guerra of the Centers for Disease Control and Prevention; Richard Hoskins of the State of Washington Department of Health; Tom Reynolds of the University of Texas School of Public Health along with Luc Anselin, Richard Block, Carolyn Block, Phil Canter, Long Doan, Daniel Helms, Jim LeBeau, Ron Wilson and Bryan Hill mentioned above.

- 31. To the dozens of individuals who provided feedback and suggestions for improving the program. They are, unfortunately, too numerous to list.
- 32. Finally, this program is dedicated to my wife, Dr. C. Elizabeth Castro, for being so patient and supportive throughout this long process. She is an inspiration to me for this whole effort.

Disclaimer and License Agreement

This project was supported by Grant 2005-IJ-CX-K037 awarded by the National Institute of Justice, Office of Justice Programs, US Department of Justice and built on earlier National Institute of Justice grants. Points of view in this document are those of the author and do not necessarily represent the official position or policies of the US Department of Justice.

CrimeStat[®] is a registered trademark of Ned Levine & Associates. The program is copyrighted by and the property of Ned Levine and Associates and is intended for the use of law enforcement agencies, criminal justice researchers, and educators. It can be distributed freely for educational or research purposes, but cannot be re-sold. It must be cited correctly in any publication or report that uses results from the program. The correct citation is:

Ned Levine, *CrimeStat IV: A Spatial Statistics Program for the Analysis of Crime Incident Locations (version 4.0).* Ned Levine & Associates, Houston, TX, and the National Institute of Justice, Washington, DC, June 2013.

The National Institute of Justice, Office of Justice Programs, United States Department of Justice reserves a royalty-free, non-exclusive, and irrevocable license to reproduce, publish, or otherwise use, and authorize others to use this program for Federal government purposes. This program cannot be distributed without the permission of both Ned Levine and Associates and the National Institute of Justice, except as noted above.

With respect to this software and documentation, neither Ned Levine and Associates, the United States Government nor any of their respective employees make any warranty, express or

implied, including but not limited to the warranties of merchantability and fitness for a particular purpose. In no event will Ned Levine and Associates, the United States Government or any of their respective employees be liable for direct, indirect, special, incidental, or consequential damages arising out of the use or inability to use the software or documentation. Neither Ned Levine and Associates, the United States Government, nor their respective employees are responsible for any costs including, but not limited to, those incurred as a result of lost profits or revenue, loss of time or use of software, loss of data, the costs of recovering such software or data, the cost of substitute software, or other similar costs. Any actions taken or documents printed as a result of using this software and its accompanying documentation remain the responsibility of the user.

Any questions about the use of this program should be directed to either:

Dr. Ned Levine Ned Levine & Associates Houston, TX crimestat@nedlevine.com

Mr. Joel Hunt Mapping and Analysis for Public Safety Program National Institute of Justice U. S. Department of Justice 810 7th St, NW