U.S. flag

An official website of the United States government, Department of Justice.

Massively Parallel Sequencing of 12 Autosomal STRs in Cannabis Sativa

NCJ Number
254299
Date Published
2018
Length
6 pages
Author(s)
Rachel Houston; Carrie Mayes; Jonathan L. King; Sheree Hughes-Stamm; David Gangitano
Agencies
NIJ-Sponsored
Publication Type
Research (Applied/Empirical), Report (Study/Research), Report (Grant Sponsored), Program/Project Description
Grant Number(s)
2015-R2-CX-0003
Annotation
Since massively parallel sequencing (MPS) is an emerging technology in the field of forensic genetics that provides distinct advantages compared to capillary electrophoresis, the current study provides a proof of concept that MPS technologies can be applied to genotype autosomal STRs in Cannabis sativa.
Abstract
A custom panel for MPS was designed to interrogate 12 cannabis-specific STR loci by sequence rather than size. A simple workflow was implemented to integrate the custom PCR multiplex into a workflow compatible with the Ion Plus Fragment Library Kit, Ion Chef, and Ion S5 System. For data sorting and sequence analysis, a custom configuration file was designed for STRait Razor v3 to parse and extract STR sequence data. This study represents a preliminary investigation of sequence variation for 12 autosomal STR loci in 16 cannabis samples. Full concordance was observed between the MPS and CE data. Results revealed intra-repeat variation in eight loci where the nominal or size-based allele was identical, but variances were discovered in the sequence of the flanking region. Although only a small number of cannabis samples were evaluated, this study demonstrates that more informative STR data can be obtained via MPS. (publisher abstract modified)
Date Created: July 20, 2021