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Chapter 7: 

Hot Spot Analysis of Points: I 
 

In this and the next two chapters, we describe ten tools for identifying clusters of crime 
incidents.  Six of the tools apply to points while four apply to zones.  The discussion has been 
divided into three chapters primarily because of the length of the discussion.  This chapter 
discusses the concept of a hot spot and four hot spot techniques: the mode, fuzzy mode, nearest 
neighbor hierarchical clustering, and risk-adjusted nearest neighbor hierarchical clustering.  
Chapter 8 discusses STAC and the K-means algorithm.  Chapter 9 discusses Anselin=s Local 
Moran, the Getis-Ord Local “G”, the zonal nearest neighbor hierarchical clustering algorithm, 
and the risk-adjusted zonal nearest neighbor hierarchical methods.  However, the ten techniques 
should be seen as a continuum of approaches towards identifying hot spots. 
 

Hot Spots 
 

Typically called hot spots or hot spot areas, these are concentrations of incidents within a 
limited geographical area that appear over time (Braga & Weisburd, 2010).  Police have learned 
from experience that there are particular environments that attract crimes in larger-than-expected 
concentrations, so-called crime generators.  Sometimes these hot spot areas are defined by 
particular activities (e.g., drug trading; Weisburd & Green, 1995; Weisburd, Maher, & Sherman, 
1992; Sherman, Gartin & Buerger, 1989; Maltz, Gordon, & Friedman, 1989), other times by 
specific concentrations of land uses (e.g., skid row areas, bars, adult bookshops, itinerant hotels), 
and sometimes by interactions between activities and land uses, such as thefts at transit stations 
or bus stops (Block & Block, 1995; Levine, Wachs & Shirazi, 1986).  Whatever the reasons for 
the concentration, they are real and are known by most police departments.  
 

While there are some theoretical concerns about what links disparate crime incidents 
together into a cluster, nonetheless, the concept is very useful (Chainey, Thompson, & Uhlig, 
2008; Levine, 2008).  Police officers patrolling a precinct can focus their attention on particular 
environments because they know that crime incidents will continually reappear in these places.  
Crime prevention units can target their efforts knowing that they will achieve a positive effect in 
reducing crime with limited resources (Sherman & Weisburd, 1995).  In short, the concept is 
very useful.   
 

Nevertheless, the concept is a perceptual construct.  Hot spots do not exist in reality, but 
are areas where there is sufficient clustering of certain activities (in this case, crime) such that 
they get labeled such. There is not a border around these incidents, but a gradient where people 
draw an imaginary line to indicate the location at which the hot spot starts.  In reality, any 
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variable that is measured, such as the density of crime incidents, will be continuous over an area, 
being higher in some parts and lower in others.  Where a line is drawn in order to define a hot 
spot is somewhat arbitrary.  
 

Statistical Approaches to the Measurement of Hot Spots 
 
 Unfortunately, measuring a hot spot is also a complicated problem.  There are literally 
dozens of different statistical techniques designed to identify hot spots (Everitt, Landau and 
Leese, 2001).  Many, but not all, of the techniques are typically known under the general 
statistical label of cluster analysis.  These are statistical techniques aimed at grouping cases 
together into relatively coherent clusters.  All of the techniques depend on optimizing various 
statistical criteria, but the techniques differ among themselves in their methodology as well as in 
the criteria used for identification.  Because hot spots are perceptual constructs, any technique 
that is used must approximate how someone would perceive an area.  The techniques do this 
through various mathematical criteria. 
 

Types of Cluster Analysis (Hot Spot) Methods 
 

Several typologies of cluster analysis have been developed as cluster routines typically 
fall into several general categories (Everitt, 2011; Can and Megbolugbe, 1996): 
 

1. Point locations.  This is the most intuitive type of cluster involving the number of 
incidents occurring at different locations.  Locations with the most number of 
incidents are defined as hot spots.  CrimeStat includes two point location 
techniques: the Mode and Fuzzy Mode; 

 
2. Hierarchical techniques (Sneath, 1957; McQuitty, 1960; Sokal & Sneath, 1963; 

King, 1967; Sokal & Michener, 1958; Ward, 1963; Hartigan, 1975) are like an 
inverted tree diagram in which two or more incidents are first grouped on the 
basis of some criteria (e.g., nearest neighbor).  Then, the pairs are grouped into 
second-order clusters.  The second-order clusters are then grouped into third-order 
clusters, and this process is repeated until either all incidents fall into a single 
cluster or else the grouping criteria fail.  Thus, there is a hierarchy of clusters that 
can be displayed with a dendogram (an inverted tree diagram).   

 
Figure 7.1 shows an example of a hierarchical clustering where there are four 
orders (levels) of clustering; the visualization is non-spatial in order to show the 
linkages.  In this example, all individual incidents are grouped into first-order  
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clusters that, in turn, are grouped into second-order clusters that, in turn, are 
grouped into third-order clusters and which all converge into a single fourth-order 
cluster.  Many hierarchical techniques, however, do not group all incidents or all 
clusters into the next highest level. CrimeStat includes four hierarchical 
techniques: Nearest Neighbor Hierarchical Clustering (Nnh) routine and Risk-
adjusted Nearest Neighbor Hierarchical Clustering (Rnnh) routines in this chapter 
and Zonal Nearest Neighbor Hiearchical Clustering (Znnh) and Risk-adjusted 
Nearest Neighbor Zonal Hierarchical Clustering (RZnnh) routines in Chapter 9. 

 
3. Partitioning techniques, frequently called the K-means technique, partition the 

incidents into a specified number of groupings, usually defined by the user 
(Thorndike, 1953; MacQueen, 1967; Ball and Hall, 1970; Beale, 1969).  Thus, all 
points are assigned to one, and only one, group.  Figure 7.2 shows a partitioning 
technique where all points are assigned to clusters and are displayed as ellipses.  
CrimeStat includes one partitioning technique, a K-means partitioning technique; 
 

4. Scan statistics that apply a search circle uniformly throughout the study area, 
either to each point or to each node of a reference grid (Block & Block, 1999; 
Kulldorff, 1997; Block & Block, 1995; Block, 1994; Openshaw, Craft, Charlton, 
& Birch, 1988; Openshaw, Charlton, Wymer, & Craft, 1987. 

 
5. Density techniques identify clusters by searching for dense concentrations of 

incidents (Bailey & Gattrell, 1995; Silverman, 1986; Gitman & Levine, 1970; 
Weishart, 1969; Carmichael, George, & Julius, 1968; Cattell & Coulter, 1966).  
CrimeStat has two density search routines: a Single-kernel Density (K) method 
and a Dual-kernel Density Interpolation (Dk); this is discussed in chapter 10; 

 
6. Clumping techniques involve the partitioning of incidents into groups or clusters, 

but allow overlapping membership (Jones & Jackson, 1967; Needham, 1967; 
Jardine & Sibson, 1968; Cole & Wishart, 1970); 

 
7. Risk-based techniques identify clusters in relation to an underlying base >at risk= 

variable, such as population, employment, or active targets (Jefferis, 1998; 
Kulldorff and Nagarwalla, 1995).  CrimeStat includes three risk-based techniques 
- a Risk-adjusted Nearest Neighbor Hierarchical Clustering routine, discussed in 
this chapter; a Zonal Risk-adjusted Nearest Neighbor Hierarchical Clustering 
routines discussed in Chapter 9; and a Dual Kernel Density method, discussed in 
Chapter 10). 
 

 



Partitioning Clustering TechniqueFigure 7.2:
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8. Zonal clustering techniques identify contiguous zones that have either high levels 
or similar levels of an attribute variable or (Getis & Ord, 1996; Anselin, 1995).  
CrimeStat includes four zonal clustering methods: Anselin’s Local Moran; the 
Getis-Ord Local “G”; Zonal Nearest Neighbor Hierarchical Clustering; and Zonal 
Risk-adjusted Nearest Neighbor Hierarchical Clustering. 

 
9. Miscellaneous techniques are other methods that are less commonly used (Everitt, 

2011).   
 

Many of these methods are hybrids of these classes. For example, the Risk-adjusted 
Nearest Neighbor Hierarchical Clustering routine is primarily a risk-based technique but 
involves elements of clumping while STAC is primarily a partitioning method but with elements 
of hierarchical grouping. 
 

Optimization Criteria 
 

In addition to the different types of cluster analysis, there are different criteria that 
distinguish techniques applied to space (Everitt, 2011).  Among these are: 
 

1. The definition of a cluster - whether it is a discrete grouping or a continuous 
variable; whether points must belong to a cluster or whether they can be isolated; 
whether points can belong to multiple clusters. 

 
2. The choice of variables in addition to the X and Y coordinates - whether 

weighting or intensity values are used to define similarities. 
 

3. The measurement of similarity and distance - the type of geometry being used; 
whether clusters are defined by closeness or not; the types of similarity measures 
used. 

 
4. The number of clusters - whether there are a fixed or variable number of clusters; 

whether users can define the number or not. 
 

5. The geographical scale of the clusters - whether clusters are defined by small or 
larger areas; for hierarchical techniques, what level of abstraction is considered 
optimal. 

 
6. The initial selection of cluster locations (>seeds=) - whether they are 

mathematically or user defined; the specific rules used to define the initial seeds. 
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7. The optimization routines used to adjust the initial seeds into final locations - 
whether distance is being minimized or maximized; the specific algorithms used 
to readjust seed locations. 

 
8. The visual display of the clusters, once extracted - whether drawn by hand or by a 

geometrical object (e.g., an ellipse, a convex hull); the proportion of cases 
represented in the visualization. 

 
This is not the place to provide a comprehensive review of cluster techniques (see Everitt, 

2011 for such a review).  Nevertheless, it should be clear that with the several types of cluster 
analysis and with the many criteria that can be used for any particular technique provides a large 
number of different techniques that could be applied to an incident data base.  It should be 
realized that there is not a single solution to the identification of hot spots, but that different 
techniques will reveal different groupings and patterns among the groups.  A user must be aware 
of this variability and must choose techniques that can complement other types of analysis.  It 
would be very naive to expect that a single technique can reveal the existence of hot spots in a 
jurisdiction that are unequivocally clear.  In most cases, analysts are not sure why there are hot 
spots in the first place.  Until that is solved, it would be unreasonable to expect a mathematical or 
statistical routine to solve that problem.   

 

Cluster Routines in CrimeStat 
 

Figure 7.3 shows the Hot Spot Analysis I page.  Because of the variety of cluster 
techniques, CrimeStat includes ten techniques that cover the range of techniques that have been 
used: 
 

1. The Mode 
2. The Fuzzy Mode 
3. Nearest neighbor hierarchical clustering 
4. Risk-adjusted nearest neighbor hierarchical clustering 
5. The Spatial and Temporal Analysis of Crime (STAC) module 
6. K-means clustering 
7. Anselin=s Local Moran 
8. Getis-Ord Local “G” 
9. Zonal nearest neighbor hierarchical clustering 
10. Zonal risk-adjusted nearest neighbor hierarchical clustering 
 

 These are not the only techniques, of course, and analysts should use them as 
complements to other types of analysis.  Because of the number of routines, these routines have  
 



Hot Spot Analysis I Screen
Figure 7.3:
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been allocated to two different setup tabs in CrimeStat called Hot Spot= Analysis I and Hot Spot 
Analysis II.  However, they should be seen as one collection of similar techniques.  This chapter 
will discuss the first four of these and the next two chapters the remaining ones. 

 

Mode 
 

The mode is the most intuitive type of hot spot.  It is the location with the largest number 
of incidents.  The CrimeStat Mode routine calculates the frequency of incidents occurring at each 
unique location (a point with a unique X and Y coordinate), sorts the list, and outputs the results 
in rank order from the most frequent to the least frequent.   
 

Only locations that are represented in the primary file are identified.  The routine outputs 
a >dbf= file that includes four variables: 
 

1. The rank order of the location with 1 being the location with the most incidents, 2 
being the location with the next most incidents, 3 being the location with the third 
most incidents, and so forth until those locations that have only one incident each; 

 
2. The frequency of incidents at the location.  This is the number of incidents 

occurring at that location; 
 

3. The X coordinate of the location; and  
 

4. The Y coordinate of the location. 
 

To illustrate, Table 7.1 presents the formatted output for the ten most frequent locations 
for 14,853 motor vehicle thefts that occurred within the City of Baltimore or Baltimore County 
in 1996.1  Figure 7.4 maps the ten locations with the most vehicle thefts (two were tied for rank 
three and two were tied for rank nine).  The map displays the locations with a round symbol, the 
size of which is proportional the number of incidents.  Also, the number of incidents at the 
location is displayed.  These vary from a high of 43 vehicle thefts at location number 1 to a low 
of 15 vehicle thefts at location numbers 9 and 10.  In order to know what these locations 
represent, the user will have to overlay other GIS layers over the points.  In the example, of the 
ten locations, eight are at shopping centers, one is the parking lot of a train station, and one is the 
parking lot of a large organization. 

 

                         
1  The output in Table 7.1 has been formatted.  CrimeStat only outputs an Ascii file.   



Figure 7.4:
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Table 7.1: 

Mode Output for 
Most Frequent Locations for Motor Vehicle Thefts 

City of Baltimore and Baltimore County: 1990 
(ONLY 10 SHOWN) 

 
Mode: 
------- 

N = 14,853 
 

Rank Freq        X        Y 
------- ------ ------------- ------------ 
1      43     -76.7507      39.3115 
2      37     -76.4710      39.3741 
3      24     -76.4880      39.3372 
4      24     -76.6015      39.4042 
5      23     -76.7877      39.4046 
6      22     -76.6517      39.2927 
7      21     -76.7319      39.2880 
8      17     -76.5363      39.3060 
9      15     -76.7026      39.3560 
10      15     -76.5128      39.2927 
Etc.  

 
The mode is a very simple measure, but one that can be very useful.  In the example, it is 

clear that most vehicle thefts occur at institutional settings, where there are a collection of parked 
vehicles.  In the case of the shopping centers, the Baltimore County Police Department are aware 
of the number of vehicles stolen at these locations and work with the shopping center 
management offices to try to reduce the thefts.  It also turns out that shopping centers are the 
most frequent locations for stolen vehicle retrievals, so it works both ways. 
 

Fuzzy Mode 
 

The usefulness of the mode, however, is dependent on the degree of resolution for the 
geo-referencing of incidents. In the case of the Baltimore vehicle thefts, thefts locations were 
assigned a single point at the address.  Thus, all thefts occurring at any one shopping center are 
assigned the same X and Y coordinates.  However, there are situations when the assignment of a 
coordinate will not be a good indicator of the hot spot location.  For example, assigning the 
vehicle theft location to a particular stall in a parking lot will lead to few, if any, locations 
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coming up more than once.  In this case, the mode would not be a useful statistic at all.  Another 
example is assigning the vehicle theft location for the parking lot of a multi-building apartment 
complex to the address of the owner.  In this case, what is a highly concentrated set of vehicle 
thefts become dispersed because the owners live at different addresses within the complex. 
 

Consequently, CrimeStat includes a second point location hot spot routine called the 
Fuzzy Mode.  This allows the user to define a small search radius around each location to include 
events that occur around or near that location. For example, a user can put a 50 yard or 100 
meter search radius and the routine will calculate the number of incidents that occur at each 
location and within a 50 yard or 100 meter radius. 

 
The aim of the statistic is to allow the identification of locations where a number of 

incidents may occur, but where there may not be precision in measurement.2 For example, if 
several apartment complexes share a parking lot, any vehicle theft in the lot may be assigned to 
the address of the owner, rather than to the parking lot.  In this case, the measurement is 
imprecise.  Plotting the location of the vehicle thefts will make it appear that there are multiple 
locations, when, in fact, there is only approximately one.   
 

Another example would be the measurement of motor vehicle crashes that all occur at a 
single intersection.  If the measurement of the location is very precise, the crashes could be 
assigned to slightly different locations when, in fact, they occurred at more or less the same 
location.  In other words, the fuzzy mode allows a flexible classification of a location where the 
analyst can vary slightly the area around a location. 
 

The fuzzy mode output file is also a >dbf= file and, like the mode, also includes four 
output variables: 
 

1. The rank order of the location with 1 being the location with the most incidents, 2 
being the location with the next most incidents, 3 being the location with the third 
most incidents, and so forth until only those locations which have only one 
incident each; 
 

                         
2  In the statistical literature, this type of statistic is known as a spatial scan with a fixed circular window 

(Kulldorff, 1997; Kulldorff and Nagarwalla, 1995).  However, our emphasis here is on defining 
approximate point locations where there is either measurement error or very small locational differences. In 
this sense, the term >fuzzy= is more similar to the classification literature where imprecise boundaries exist 
and an incident can belong to two or more groups (Bezdek, 1981; McBratney and deGruijter, 1992; Xie and 
Beni, 1991). 
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2. The frequency of incidents at the location.  This is the number of incidents 
occurring at that location; 

 
3. The X coordinate of the location; and  

 
4. The Y coordinate of the location. 

 
Note that allowing a search radius around a location means that incidents are counted 

multiple times, one for each radius they fall within.  If used carefully, the fuzzy mode can allow 
the identification of high incident locations more precisely than the mode routine.  But, because 
of the multiple counting of incidents that occurs, the frequency of incidents at locations will 
change, compared to the mode, as well as possibly the hierarchy. 
 

To illustrate this, Figure 7.5 maps the top 13 locations for vehicle thefts identified by the 
fuzzy mode routine using a search radius of 300 feet (four were tied for number 2 and eight were 
tied for number 5).  The 13 locations are displayed by a single magenta triangle and are 
compared to the 10 locations identified by the mode (blue circle).  Notice that two of the 13 
locations are clustered at the same places as those identified by the mode, but the other two 
triangles are different locations.  Two of these locations have multiple fuzzy modes. The most 
southeastern triangle in Baltimore County actually includes three fuzzy modes while the one 
triangle within the City of Baltimore actually includes eight fuzzy modes. 
 

Figure 7.6 zooms in to display the eight clustered locations within the City of Baltimore, 
each of which has a fuzzy mode count of 29 vehicle thefts.  The eight fuzzy mode locations are 
actually eight parking lots within the Mondawin Shopping Mall.  Since the parking lots are 
within 300 feet of each other, each has a cumulative count of 29 vehicle thefts.  In other words, 
the fuzzy mode has identified a general location where there are multiple sub-locations in which 
vehicle thefts occur. 
 

Uses of the Fuzzy Mode 
 

The fuzzy mode routine can be useful because it allows the identification of small hot 
spot areas, rather than exact locations.  Any one location may not have a sufficient number of 
incidents that occur at that location, but because it is close to other locations that have incidents 
occurring, the cumulative count may actually be quite high.  Additional examples when it might 
be useful are in identifying multiple parking lots in parks or in identifying common parking areas 
for multi-unit buildings (e.g., large apartment complexes).   

 
 

 



Figure 7.5:



Figure 7.6:
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 The method would also be useful for identifying hot spots when exact coordinates are 
specified for each incident.  For example, in the parking lot example above, if each vehicle theft 
were identified by a stall number, as opposed to a single coordinate for the entire parking lot, few 
vehicle thefts would occur in exactly the same location.  Allowing a search radius around the 
coordinates (the fuzzy part of the frequency count) allow a number of events to be grouped 
together whereas exact locations might not identify that grouping. 

 
Limitations of the Fuzzy Mode 

 
On the other hand, the fuzzy mode does involve duplicate counts points that are close to 

each other will be counted multiple times. This can allow distortion.   By changing the search 
radius, the number of incidents counted for any one location changes as well as it=s order in the 
hierarchy.  For example, when a quarter mile search radius was used, all top locations occurred 
within a short distance of each other (not shown). In short, the user must be careful in using the 
fuzzy mode for analysis. 
 

Nearest Neighbor Hierarchical Clustering 
 

We now turn to methods that identify hot spot areas, as opposed to individual points that 
are clustered or are the center of a cluster.  The nearest neighbor hierarchical clustering (or Nnh 
for short) routine in CrimeStat identifies groups of incidents that are spatially close.  It is a 
hierarchical clustering routine that clusters points together on the basis of several criteria. The 
clustering is repeated until either all points are grouped into a single cluster or else the clustering 
criteria fail.  Hierarchical clustering methods are among the oldest cluster routines (Everitt, 
Landau and Leese, 2001; King, 1967; Systat, 2008).  Among the clustering criteria that have 
been used are the nearest neighbor method (Johnson, 1967; D'andrade. 1978), farthest neighbor, 
the centroid method (King, 1967), median clusters (Gowers, 1967), group averages (Sokal and 
Michener, 1958), and minimum error (Ward, 1967). 
 

The CrimeStat Nnh routine is a variation on this approach but has its own unique 
algorithm.  It uses a method that defines a threshold distance and compares the threshold to the 
distances for all pairs of points.  Only points that are closer to one or more other points than the 
threshold distance are selected for clustering.  In addition, the user can specify a minimum 
number of points to be included in a cluster.  Only points that fit both criteria - closer than the 
threshold and belonging to a group having the minimum number of points, are clustered at the 
first level (first-order clusters).   
 

The routine then conducts subsequent clustering to produce a hierarchy of clusters. The 
first-order clusters are themselves clustered into second-order clusters.  Again, only clusters that 
are spatially closer than a threshold distance (calculated anew for the second level) are included.  
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The second-order clusters, in turn, are clustered into third-order clusters, and this re-clustering 
process is continued until either all clusters converge into a single cluster or, more likely, the 
clustering criteria fails. 
 

Criterion 1: Threshold Distance 
 

The first criterion in identifying clusters is whether points are closer than a specified 
threshold distance.  There are two alternatives in selecting the threshold distance: 1) a random 
nearest neighbor distance (the default); or 2) a fixed distance. 
 

Random nearest neighbor distance 
 
 The default alternative is to use the expected random nearest neighbor distance for first-
order nearest neighbors. The user specifies a one-tailed confidence interval around the random 
expected nearest neighbor distance.  The t-value corresponding to this probability level, t, is 
selected from the Student=s t-distribution under the assumption that the degrees of freedom are at 
least 120.3  This selection is controlled by a slide bar under the routine (see Figure 7.3).  From 
chapter 6, the mean random distance was defined as: 

 

0.5                 repeat 6.2 

 
where A is the area of the region and N is the number of incidents and the standard error of the 
mean random distance is: 
 

 ≅ .
               repeat 6.5 

 
where A is the area of the region and N is the sample size (number of incidents).  The confidence 
interval around that distance is defined as: 
 
 	 	 ∗          (7.1) 

 
where t is the t-value associated with a probability level in the Student=s t-distribution.   
  

The approximate lower limit of this confidence interval is: 
 

                         
3  This is the next highest degree of freedom in the Student=s t-table below infinity. 
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 	 	 	 	 	 ∗  

 

 ≅ 0.5 .
           (7.2) 

 
and the upper limit of this confidence interval is: 
 
 	 	 	 	 	 ∗  

 

 ≅ 0.5 .
           (7.3) 

 
The confidence interval defines a probability for the distance between any pair of points.  

For example, for a specific one-tailed probability, p, fewer than p% of the incidents would have 
nearest neighbor distances smaller than this selected limit if the distribution was spatially 
random.  If the data were spatially random and if the mean random distance is selected as the 
threshold criteria (the default position on the slide bar), approximately 50% of the pairs will be 
closer than this distance.  For randomly distributed data, if a p#.05 level is taken for t (two steps 
to the left of the default or the fifth in from the left), then only about 5% of the pairs would be 
closer than the threshold distance.  Similarly, if a p#.75 level is taken for t (one step to the right 
of the default or the fifth in from the right), then about 75% of the pairs would be closer than the 
threshold distance. 
 

In other words, the threshold distance is a probability level for selecting any two points (a 
pair) on the basis of a chance distribution.  The slide bar has 12 levels and is associated with a 
probability level for a t-distribution from a sample of 120 or larger.  From the left, the p-values 
are approximately (Table 7.2): 

 
Taking a broader conception of this, if there is a spatially random distribution, then for all 

distances between unique pairs of points, of which there are 
 

             (7.4) 

 
fewer than p% will be shorter than this threshold distance. 
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Table 7.2: 
 Approximate Probability Values Associated with Threshold Scale Bar 
 
     Scale Bar 
  Position  Probability  Description 
 
     1   0.00001  Far left point of slide bar 
  2   0.0001   Second from left 
  3   0.001   Third from left 
  4   0.01   Fourth from left 
  5   0.05   Fifth from left 
  6   0.1   Sixth from left 
  7   0.5   Sixth from right (default value) 
  8   0.75   Fifth from right 
  9   0.9   Fourth from righ 
  10   0.95   Third from righ 
  11   0.99   Second from righ 
  12   0.999   Far right point of slide bar 

 
This does not mean, however, that the probability of finding a cluster is equal to this 

probability.  It only indicates the probability of selecting two points (a pair) on the basis of a 
chance distribution.  If additional points are to be included in the cluster, then the probability of 
obtaining the cluster will be less.  Thus, the probability of selecting three points or four points or 
more points on the basis of chance will be much smaller. 
 
  Area must be defined correctly 
 

Note that it is very important that area be defined correctly for this routine to work. If the 
user defines the area on the measurement parameters page (see chapter 3), the Nnh routine uses 
that value to calculate the threshold distance.  If the user does not define the area on the 
measurement parameters page, the routine calculates the area from the minimum and maximum 
X/Y values (the bounding rectangle), which will usually be a larger area.  In either case, the 
routine will be able to calculate a threshold distance and run the routine.   
 

However, if the area units are defined incorrectly on the measurement parameters page, 
then the routine will certainly calculate the threshold distance wrongly.  For example, if data are 
in feet but the area on the measurement parameters page are defined in square miles, most likely 
the routine will not find any points that are farther apart the threshold distance since that distance 
is defined in miles.  In other words, it is essential that the area units be consistent with the data 
for the routine to properly work. 
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  Fixed distance 
 
The second alternative for selecting a threshold distance is to choose a fixed distance (in 

miles, nautical miles, feet, kilometers, or meters).  The user checks the AFixed distance@ box and 
selects a threshold distance.  The main advantage in this approach is that the search radius can be 
specified exactly.  This is useful for comparing the number of clusters for different distributions 
(e.g., the number of robbery hot spots compared to burglary hot spots using a search radius of 0.5 
miles).  The main disadvantage of this method is that the choice of a threshold is subjective.  The 
larger the distance that is selected, the greater the likelihood that clusters will be found by 
chance.  Of course, this can be tested using a Monte Carlo simulation (see below). 
 

Criterion 2: Minimum Number of Points 
 

 Whichever method is used for selecting a threshold distance, a second clustering criterion 
is the minimum number of points that are required for each cluster.  This criterion is used to 
reduce the number of very small clusters.  With large data sets, hundreds, if not thousands, of 
clusters can be found if only pairs of points are selected as being closer than a threshold distance.  
To minimize numerous very small clusters as well as reduce the likelihood that clusters could be 
found by chance, the user can set a minimum number restriction.  The default is 10.  This 
decision does not affect the selection of the clusters, only the number that are output.  By 
decreasing this number, more clusters are output; conversely, by increasing this number, fewer 
clusters are output. The routine will only include points in the final clustering that are part of 
clusters in which the minimum number is found. 
 

First-order Clustering 
 
Using these criteria, CrimeStat constructs a first-order clustering of the points (see 

endnote	 ).   For each first-order cluster, the center of minimum distance is output as the cluster 
center, which can be saved as a >.dbf= file. 
 

Second and Higher-order Clusters 
 

The first-order clusters are then tested for second-order clustering.  The procedure is 
similar to first-order clustering except that the cluster centers (the center of minimum distance 
for each) are now treated as >points= which themselves are clustered (see endnote ). The process 
is repeated until no further clustering can be conducted.  Either all sub-clusters converge into a 
single cluster, the threshold distance criterion fails, or there are fewer than four seeds in the 
higher-order cluster. 
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Visualizing the Cluster Output 
 

To identify the approximate cluster location, CrimeStat allows the cluster to be output as 
either as an ellipse, a convex hull, or both. 
 

Ellipse output 
 

A standard deviational ellipse is calculated for each cluster (see chapter 4 for the 
definition).  The user can choose between 1 standard deviation (the default), 1.5 standard 
deviations, or 2 standard deviations (indicated on the interface by 1X, 1.5X, and 2X).  Typically, 
one standard deviation will cover more than 50% of the cases, one and a half standard deviations 
will cover more than 90% of the cases, and two standard deviations will cover more than 99% of 
the cases, although the exact percentage will depend on the distribution.  The user specifies the 
number of standard deviations to save as ellipses in ArcGIS >.shp=, MapInfo >.mif=, Google Earth 
‘kml’ (if the data are in spherical coordinates), or various Ascii formats. 
 

Be careful as standard deviations can create an exaggerated view of the underlying 
cluster.  The ellipse, after all, is an abstraction from the points in the cluster that may be arranged 
in an irregular manner.  For example, for a regional view, a 1 standard deviational ellipse may 
not be very visible while for a small area, a 2 standard deviational ellipse may be too big.  The 
user has to balance the need to accurately display the cluster compared to making it easier for a 
viewer to understand its location. 

 
Convex hull output 

 
A convex hull is calculated for each cluster (see chapter 4 for definition).  The convex 

hull draws a polygon around the points in the cluster.  It is a literal definition of the cluster, as 
opposed to the ellipse which is an abstraction.   The convex hull can be saved in ArcGIS >.shp=, 
MapInfo >.mif=, Google Earth ‘kml’, or various Ascii formats. 

 
Ellipse or convex hulls? 

 
With the choice of an ellipse or a convex hull, the user can visualize clusters in two 

different ways.  There are advantages and disadvantages of each approach.  The convex hull has 
the advantage of being a polygon that corresponds exactly to the cluster.  For neighborhood level 
analysis, it is probably preferable to the ellipse, which is an abstraction.  On the other hand, any 
convex hull is based on a sample (e.g., this year=s robberies compared to last year=s robberies) 
and like any sample will vary from one instance to another.  It may not capture all the space 
associated with the hot spot.  The shape of a convex hull is often un-intuitive, following the 
outline of the incidents.  An ellipse, on the other hand, is more general and will usually be more 
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stable from year to year.  It usually looks better on a map or at least users seem to understand it 
better; it is a more familiar graphical object than an irregular polygon.  The biggest disadvantage 
to an ellipse is that it forces a certain shape on the data, whether there are incidents in every part 
of it or not.  So, in extreme cases, one finds ellipses that go outside of study area boundaries or 
extend into reservoirs or lakes or other features that are logically impossible to have incidents.  
At the same time, the ellipses may not include locations that are actually part of the hot spot.. 
 

In short, the user needs to balance the generality and visual familiarity of an ellipse with 
the limits of the actual hot spot.  Probably for a small scale, regional perspective, the ellipses are 
preferable since a viewer can quickly see where the hot spots are located.  For detailed 
neighborhood-level work, however, the convex hull is probably better since it shows where the 
incidents actually occurred. 

 
 Abstraction of incidents with second- and higher-order clusters 
 
One thing to note is that second- and higher-order clusters can be visually misleading.  

The second-order clusters may visually encompass points that were not clustered in the first-
order but they only are calculated using the centroids of the first-order clusters.  Thus, in a GIS, 
one could select all incidents that fall within the boundaries of the second-order cluster (whether 
defined by an ellipse or a convex hull) and the number will generally be more than the points that 
were accumulated from the first-order clusters. A user needs to be aware of this as second- and 
higher-order clusters are abstractions from first- and earlier-order clusters. 
 
 Guidelines for Selecting Parameters 
 

In the Nnh routine, the user has to define three parameters - the threshold distance, the 
minimum number of points, and the visual output of the hot spots. For a fixed threshold distance, 
the user has to choose a distance that is meaningful.  For crime incidents, probably the threshold 
distance should not be more than 0.5 miles and, preferably, smaller.   
 

If the random nearest neighbor distance is used as a threshold, the p-value is selected with 
a likelihood slider bar (see Figure 7.3).  This bar indicates a range of p-values from 0.00001 (i.e., 
the likelihood of obtaining a pair by chance is 0.001%) to 0.999 (i.e., the likelihood of obtaining 
a pair by chance is 99.9%).  The slider bar actually controls the value of t in equation 7.3, which 
varies from -3.719 to +3.090.  The smaller the t-value, the smaller the threshold distance.  With 
smaller threshold distances, fewer clusters are extracted and are typically smaller (although not 
always).  Thus, they are more likely to be not due to chance. 
 

If only pairs of points were being grouped, then the threshold distance would be critical.  
For example, with the default p#.5 value, then about half the pairs would be selected by chance 
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if the data were truly random.  However, since there are a minimum number of points that are 
specified, the likelihood of finding a cluster with the minimum number of points is much 
smaller.  The larger the minimum number selected, the smaller the likelihood of obtaining a 
cluster by chance. 

 
Therefore, one can think of the slide bar as a filter for grouping points.  One can make the 

filter smaller (moving the slide bar to the left) or larger (moving the slide bar to the right).  There 
will be some effect on the final number of clusters, but the likelihood of obtaining a cluster by 
chance will be generally low.  Statistically, there is more certainty with small threshold distances 
than with larger ones using this technique.  Thus, a user must trade off the number of clusters and 
the size of an area that defines a cluster with the likelihood that the result could be due to chance.  
 

This choice will depend on the needs of the user.  For interventions around particular 
locations, the use of a small threshold distance may actually be appropriate; some of the ellipses 
seen in Figure 7.7 below cover only a couple of street segments.  These define micro-
neighborhoods.  On the other hand, for a patrol route, for example, a cluster the size of several 
neighborhoods might be more appropriate.  A patrol car would need to cover a sizeable area and 
having a larger area to target might be more appropriate than a >micro= environment.  However, 
there will be less precision with a larger cluster size in this type of area. 
 

A second criterion is the minimum number of points that are required to define a cluster.  
If a cluster does not have this minimum number, CrimeStat will ignore the seed location.  
Without this criterion, the Nnh routine could identify clusters of two or three incidents each.  A 
hot spot of this size is usually not very useful.  Consequently, the user should increase the 
number to ensure that the identified cluster represents a meaningful number of cases.  The 
default value is 10, but the user can type in any other value. 
 

The user may have to experiment with several runs to get a solution that appears right.  
As a rule of thumb, start with the default settings.  If there appears to be too many clusters, 
tighten up the criteria by selecting a lower probability for grouping a pair by chance (i.e., shifting 
the threshold distance to the left) or by increasing the minimum number of points required to be 
defined as a cluster (e.g., from 10 to 20).  On the other hand, if there appears to be too few 
clusters, loosen the criteria by selecting a higher probability for grouping pairs by chance (i.e., 
shifting the threshold distance to the right) or decreasing the minimum number of points in a 
cluster (e.g., from 10 to 5).  Then, once an appropriate solution has been found, the user can fine 
tune the results by slight changes.   
 

In general, the minimum number of points criterion is more critical for the number of 
clusters than the threshold distance, though the latter can also influence the results. For example, 
with the 1996 Baltimore County robbery data set (N=1181 incidents), a minimum of 26 and a 
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maximum of 28 clusters were found by changing the threshold distance from the minimum p-
value (p#0.00001) to the maximum p-value (p#0.999).  On the other hand, changing the 
minimum number of points per clusters from 10 to 20 reduced the number of clusters found 
(with the default threshold distance) from 26 to 11.     

 
The third criterion is the visual display of the clusters.  The convex hull is literal; it will 

draw a polygon around the points in the cluster.  The ellipse, on the other hand, requires a 
decision by the user on the number of standard deviations to be displayed. The choices are one 
(the default), one and a half, and two standard deviations.  Typically, one standard deviation will 
cover more than 50% of the cases; one and a half standard deviations will cover more than 90% 
of the cases, while two standard deviations will cover more than 99% of the cases although the 
exact percentage will depend on the distribution.   

 
In general, I recommend using a 1.5 as the default as 1 standard deviation will be often be 

too small while 2 standard deviations can create an exaggerated view of the underlying cluster.  
The user has to balance the need to accurately display the cluster compared to making it easier 
for a viewer to understand its location. 
 

Nnh Output Files 
 

The Nnh routine has six outputs: First, for each cluster that is identified, the hierarchical 
order and the cluster number; Second, for each cluster that is calculated, the mean center of the 
cluster. Only 45 of the seed locations are displayed on the screen.  The user can scroll down or 
across by adjusting the horizontal and vertical slider bars and clicking on the Go button. This can 
be saved as a >.dbf= file; Third, the standard deviational ellipses of the clusters is shown, whether 
the graphical output is an ellipse or a convex hull.  The size of the ellipses is determined by the 
number of standard deviations to be calculated (see above); Fourth, the number of points in the 
cluster; Fifth, the area of the ellipse; and, Sixth, the density of the cluster (number of points 
divided by area).  
 

The ellipses and convex hulls can be saved in ArcGIS >.shp=, MapInfo >.mif=, Google 
Earth ‘kml’, or various Ascii formats.  Because there are also orders of clusters (i.e., first-order, 
second-order, etc.), there is a naming convention that distinguishes the order.   
 
  Naming conventions for ellipses 
 

For the ellipses, the convention is 
 

Nnh<O><username> 
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where O is the order number and username is a name provide by the user.  Thus, 
 

Nnh1robbery 
 
are the first-order clusters for a file called >robbery= and 
 

Nnh2NightBurglaries 
 
are the second-order clusters for a file called >NightBurglaries=.  Within files, clusters are named 
 

Nnh<O>Ell<N><username> 
 
whereO is the order number, N is the ellipse number and username is the user-defined name of 
the file.  Thus, 
 

Nnh1Ell10robbery 
 
is the tenth ellipse within the first-order clusters for the file >robbery= while  

Nnh2Ell1NightBurglaries 
 
is the first ellipse within the second-order clusters for the file >NightBurglaries=. 
 

For the convex hulls, the name will be output with a >CNNH1= prefix for the first-order 
clusters, a >CNNH2= prefix for the second-order clusters, and a >CNNH3= prefix for the 
third-order clusters.  Higher-order clusters will index only the number. 
 

In other words, names of files and features can get complicated.  The easiest way to 
understand this, therefore, is to import the file into one of the GIS packages and display it.   
 

Example 1: Nearest Neighbor Hierarchical Clustering of San Antonio Robberies 
 

The Nnh routine was applied to 1,116 robberies that occurred in 2003 in San Antonio, 
TX.  A default one-tailed probability level of .05 (or 5%) was selected for the threshold distance 
and each cluster was required to contain a minimum of 10 points (the default).   Using these 
criteria, CrimeStat returned 9 first-order clusters and one second-order cluster.  The 9 first-order 
clusters varied from 37 incidents for one cluster to 7 incidents for two clusters. Figure 7.7 shows 
the first-order clusters and the second-order cluster displayed as 1.5 standard deviational ellipses.   
 

Since the criteria for clustering is the lower limit of the mean random distance, the 
distances involved are very small, as can be seen.  Note, the standard deviational ellipse is  



Figure 7.7:
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defined by the points in the cluster but is an abstraction, rather a literal definition.  Thus, there is 
not a one-to-one match between the ellipse boundaries and the points included.  For example, the 
top cluster had 37 points yet the 1.5 standard deviational ellipse included only 36 of those points. 
 

Figure 7.8 shows the shows the same clusters as in Figure 7.7 but the clusters are 
displayed as convex hulls rather than ellipses.  As seen, the convex hulls are irregular in shape 
and more limited in geographical spread; they show only the incidents that are clusters. Notice 
how the one second-order cluster defined by the convex hull is much more constrained than the 
ellipse definition of it.   

 
Note also that the second-order cluster includes incidents that were not clustered in the 

first-order clusters.  Thus, the area included in the second-order cluster is much greater than the 
sum of the first-order clusters from which it was derived.  This may lead to a wider definition of 
a larger hot spot which may be real or not.  One has to keep in mind that the second- and higher-
order clusters are abstractions of the first-order clusters, and are not clusters by themselves. 

 
Figure 7.9 zooms and compares the seven central clusters in terms of the ellipses and the 

corresponding convex hulls. Notice how the convex hulls are much more compact.  Also, how 
the convex hulls ‘stick out’ beyond the ellipses for four of the clusters.  Again, this is because the 
ellipse is a mathematical abstraction whose central axes are defined by the points, whereas the 
convex hull is defined by a polygon that defines an outer boundary. 

 
From a policing viewpoint, a convex hull is probably more useful in that it shows where 

the hot spot incidents are actually located.  As mentioned above, the polygons created by the 
convex hulls are irregular and are, therefore, less familiar to most people.  Consequently, for 
presentations of crime patterns at a regional level or even neighborhood-level for non-specialists, 
the ellipses may convey better where the hot spots are located. 
 

Simulating Statistical Significance 
 

Testing the significance of clusters from the Nnh routine is complex.  Conceptually, 
using the random nearest neighbor distance for the threshold distance defines the probability that 
two points could be grouped together on the basis of chance.  The test is for the confidence 
interval around the first-order nearest neighbor distance for a random distribution.  If the 
probability level is p%, then approximately p% of all pairs of points would be found under a 
random distribution.  Under this situation, we would know whether the number of clusters (pairs) 
that were found were significantly greater than would be expected on the basis of chance. 
 

The problem is, however, that the routine is not just clustering pairs of points, but 
clustering as many points as possible that fall within the threshold distance since there is an 



Figure 7.8:



Figure 7.9:
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additional requirement that there be a specified minimum number of points, with the minimum 
defined by the user.  The probability distribution for this situation is not known.  Consequently, 
there is a necessity to resort to a Monte Carlo simulation of randomness under the conditions of 
the Nnh test (Dwass, 1957; Barnard, 1963). 
 
 CrimeStat includes a Monte Carlo simulation routine that produces approximate 
confidence intervals (called credible intervals) for the first-order Nnh clusters that have been 
identified. Second- and higher-order clusters are not simulated since their structure depends on 
the first-order clusters.  Essentially, the routine assigns N cases randomly to a rectangle with the 
same area as the defined study area, A, and evaluates the number of clusters according to the 
defined parameters (i.e., threshold distance and minimum number of points).  It repeats this 
simulation K times where K is defined by the user (e.g., 100, 1,000, 10,000).  By running the 
simulation many times, the user can assess approximate credible intervals for the particular first-
order Nnh. 
 

The output includes five columns and twelve rows: 
 

Columns: 
 

1. The percentile, 
2. The number of first-order clusters found for that percentile, 
3. The area of the cluster for that percentile, 
4. The number of points in the cluster for that percentile, and 
5. The density of points (per unit area) for that percentile. 

 
Rows: 

 
1. The minimum (smallest) value obtained, 
2. 0.5th percentile, 
3. 1st percentile, 
4. 2.5th percentile, 
5. 5th percentile, 
6. 10th percentile, 
7. 90th percentile, 
8. 95th percentile, 
9. 97.5th percentile, 
10. 99th percentile, 
11. 99.5th percentile, and 
12. The maximum (largest) value obtained. 

 



7.31 

 The percentiles are calculated as follows.  First, over all simulation runs (e.g., 1000), the 
routine calculates the number of first-order clusters obtained for each run, sorts them in 
ascending order, and defines the percentiles for the list.  Thus, the minimum is the fewest 
number of clusters obtained over all runs, the 0.5 percentile is the lowest half of a percent for the 
number of clusters obtained over all runs, and so forth until the maximum number of clusters 
obtained over all runs.   The routine does not calculate second- or higher-order clusters since 
those are dependent on the first order clustering.  Second, within each run, the routine calculates 
the number of points per cluster, the area of each ellipse, and the density of each ellipse.  Then, it 
groups all clusters together, over all runs, and sorts them into a list.  The percentiles for 
individual clusters are then calculated.  Note that the points refer to the cluster whereas the area 
and density refer to the ellipses, which is a geometrical abstraction from the cluster.   

 
When a Monte Carlo simulation of 1000 iterations was run on the San Antonio robbery 

data, no clusters were found.  That is, given the criteria that were used for clustering (the default 
random nearest neighbor distance and a minimum of 10 incidents per cluster), it would be very 
unlikely to find any clusters on the basis of chance!   

 
To illustrate how a simulation which found random clusters looks, Table 7.3 presents an 

Nnh run that was conducted on a Baltimore County robbery data base (N=1181 incidents) using 
the default threshold distance (p#.5 for grouping a pair by chance) and a minimum number of 
points of at least five for each cluster.  Then, 1000 Monte Carlo runs were conducted with 
simulated data.  With the actual data, the Nnh routine identified 69 first-order clusters and 7 
second-order clusters.  Table 7.3 presents the parameters for the first ten first-order clusters.   
 

In examining a simulation, one has to select percentiles as choice points.  In this example, 
we use the 95th percentile.  That is, we are willing to accept a one-tailed Type I error of only 5% 
since we are only interested in finding a greater number of clusters than by chance. For the 
simulation, look at each column of the simulation results in turn.  Column 2 presents the number 
of clusters found in each simulation.  Over the 1000 runs, there was a minimum of one cluster 
found (for at least one simulation) and a maximum of 7 clusters found (for at least one 
simulation).  That is, running 1000 simulations of randomly assigned data only yielded between 
1 and 7 clusters using the parameters defined in the particular Nnh run.   The 95th percentile was 
3.  It is highly unlikely that the 69 first-order clusters that were identified would have been due to 
chance.  That is, we would have expected at most three of them to have been due to chance.  It 
appears that the robbery data is significantly clustered, though we have only tested significance 
through a random simulation.   

 
Of course, the routine is not going to identify which three clusters could have been 

selected on the basis of chance.  However, realistically the three clusters would be those with the 
lowest density, number of points per unit area (e.g., points per square mile; points per square  
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Table 7.3: 

Simulated Confidence Intervals for Nnh Routine 
Baltimore County Robberies: N=1181 

 
Nearest Neighbor Hierarchical Clustering: 
----------------------------------------- 

Sample size..........................:    1181 
Likelihood of grouping  pair of points by chance....:  0.50000 (50.000%) 
Z-value for confidence  interval..............................:  0.000 
Measurement type..............:    Direct 
Output units.......................:    Miles, Squared Miles, Points per Squared Miles 
Clusters found....................:    76 
Simulation runs.................:    1000 

 
Displaying ellipses starting from 1 (ONLY 10 SHOWN) 
 
Order Cluster Mean X Mean Y Rotation  X-Axis Y-Axis Area Points Density 
------- ---------   --------- ----------    -----------  ---------  --------     -------  ----  ------------- 
1   1  -76.44927     39.31455 77.09164 0.28303  0.09636  0.08568      40 66.828013 
1        2        -76.60219     39.40050    11.98132       0.11540      0.27452    0.09952      33  331.580616 
1          3        -76.44601     39.30490    16.66988       0.21907      0.16239    0.11176      25 23.684859 
1          4        -76.78123     39.36088    25.36983       0.27643      0.14530    0.12618      29 229.826284 
1          5        -76.73103     39.34319    67.71617       0.19445      0.16058    0.09810      29 295.628310 
1          6        -76.72945     39.28910    79.88383      0.16428      0.25957    0.13396     29 216.476166 
1          7        -76.51486     39.25986    87.32563     0.19148      0.29428    0.17703    27 152.520725 
1          8        -76.45374     39.32106    54.57635       0.15150      0.18261    0.08692      7    80.538112 
1          9        -76.75368     39.31132    89.56994       0.19748      0.22914    0.14216    22 154.753006 
1        10        -76.71641     39.29139    10.43857  0.15048      0.16879  0.07980    14 175.444372 
Etc. 

 
Distribution of the number of clusters found in simulation (percentile): 
 

 Percentile Clusters  Area     Points  Density 
 --------------  -----------  -------  --------      --------------- 
 min             1           0.03845     5             15.615111 
      0.5             1           0.04922          6            16.608967 
            1.0             1           0.05603           6            17.162252 
            2.5             1           0.06901            6             18.570113 
            5.0             1           0.08243           6             19.468353 
           10.0            1           0.10045         6             21.256559 
           90.0            2           0.28706           7             61.173748 
           95.0            3           0.31074          7             73.463654 
           97.5            3           0.32442          7             87.550868 
           99.0            4           0.35279         8       115.460337 
           99.5            5           0.36489         8         122.625375 
           max            7           0.38424          9         156.056837 
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kilometer). Thus, the user could assume that the three clusters with the lowest density are less 
certain to be real than due to chance. 
 

Column 3 shows the areas of clusters that were found over the 1000 runs using the ellipse 
as a definition for the clusters.  For the individual clusters, the simulation showed a range from 
about 0.04 to 0.38.    The 95th percentile was 0.31.   In the actual Nnh, the area of clusters varied 
between 0.05 and 0.27, indicating that all first-order clusters were smaller than the smallest value 
found in the simulation.  In other words, the real clusters are more compact than random clusters 
even though the random clusters were subject to the same threshold distance as the real data.  
This is not always true, but, in this case, it is. 
 

Column 4 presents the number of points found per cluster in the simulation; these varied 
between 5 and 9 points per cluster.  The 95th percentile was 7.  With the actual data, the number 
of points varied between 5 and 40.  Thus, some of the clusters could have been due to chance, at 
least in terms of the number of points per cluster.  Analyzing the distribution (not shown), 27 of 
the 69 clusters had 7 or fewer points.  In other words, about 39% had only as many points as 
might be expected on the basis of a chance distribution.  Putting it another way, about 40% of the 
clusters had more points than would be expected on the basis of chance 95% of the time. 
 

Finally, column 5 presents the density of points found per cluster.  Since the output unit is 
squared miles, density is the number of points per square mile.  The simulation presents a range 
from 15.6 points per square mile to 156.1 points per square mile.  The 95th percentile was 73.4 
points per square mile. The actual Nnh, on the other hand, finds a range of densities from 27.1 
points per square mile to a very high number (11071821 points per square mile).  Again, there is 
overlap between the actual clusters and what might be expected on the basis of chance; 26 out of 
69 clusters have densities that are lower than the 95th percentile found in the simulation. Again, 
about 38% have densities are not different than would be expected on the basis of chance. 

 
It should be clear that testing the significance of a cluster analysis is complex.  In the 

example, some of the criteria chosen were definitely different than a chance distribution while 
other criteria were not very different.  However, which of these criteria should be used to 
evaluate the actual distribution?  We argue that it should be the number of incidents/points 
identified in the cluster, rather than the area or density by themselves since the area has to be 
defined by a polygon (ellipse or convex hull). The number of points is the relevant criterion since 
it is one of the criteria used for the clustering in the Nnh algorithm (the other being points that 
are closer than the threshold distance. 
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Uses of Hierarchical Clustering 
 

There are four uses for the nearest neighbor hierarchical clustering technique.  First, it 
can identify small geographical environments where there are concentrated incidents.  This can 
be useful for specific targeting, either by police deployment or community intervention. There 
are clearly micro-environments that generate crime incidents and the Nhh technique tends to 
identify these small environments because the lower limit of the mean random distance is used to 
group the clusters.  The user can, of course, control the size of the grouping area by loosening or 
tightening either the threshold distance or the minimum number of required points. Thus, the 
sizes of the clusters can be adjusted to fit particular groupings of points. 

 
Second, the technique can be applied to any entire data set, such as for Baltimore County 

and Baltimore City, and need not only be applied to smaller geographical areas, such as 
precincts.  This increases the ease of use for analysts and can facilitate comparisons between 
different areas without having to limit arbitrarily the data set. 

 
Third, the linkages between several small clusters can be seen through the second- and 

higher-order clusters.  Frequently, hot spots are located near other hot spots which, in turn, are 
located still near other hot spots.  

 
 In other words, the clustering of incidents, such as robberies, is hierarchical.  With the 
San Antonio robbery data, we found two levels of grouping (first-order and second-order).  With 
larger datasets, however, frequently third-order or, even, fourth-order hot spots can be found. 
Within these large areas, there are smaller hot spots and within some of those hot spots, there are 
even smaller ones.  In other words, there are different scales to the clustering of points - different 
geographical levels, if you will, and the hierarchical clustering technique can identify these 
levels.   
 

Typically, in cities as well as in small towns, there is a greater concentration towards the 
center of the settlement or city than at the periphery.  This concentration necessarily means there 
will be more incidents (of any sort) towards the center than toward the periphery.  The Nnh 
routine captures this logic very nicely because it seeks clusters systematically from the incident 
level upwards.  More first-order clusters are going to be found in the center than in the periphery 
and this is also going to be true for second- and higher-order clusters since they build 
systematically on the first-order clusters.  One can think of the first-order clusters as ‘building 
blocks’ for spatial autocorrelation.  Thus, theoretically, hierarchical clusters capture the 
organization of a human settlement, particularly a city, in a way that no other clustering 
technique does. 
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Fourth, each of the levels implies different policing strategies.  For the smallest level, 
officers can intervene effectively in small neighborhoods, as discussed above.  Second-order 
clusters, on the other hand, are more appropriate as patrol areas; these areas are larger than first-
order clusters, but include several first-order clusters within them.  If third- or higher-order 
clusters are identified, these are generally areas with very high concentrations of crime incidents 
over a fairly large section of the jurisdiction.  The areas start to approximate precinct sizes and 
need to be thought of in terms of an integrated management strategy - police deployment, crime 
prevention, community involvement, and long-range planning.  Thus, the hierarchical technique 
allows different security strategies to be adopted and provides a coherent way of approaching 
these communities and gives flexibility to the analyst in order to choose an appropriate level of 
analysis.  This depends, of course, on the need.  For patrol cars covering an area, such as is 
common in the United States, larger hot spot areas are more appropriate.   Police cars will drive 
around the area and will cover blocks and neighborhoods that don’t necessarily have high crime 
in order to demonstrate their presence as well as make their behavior less predictable.  For this 
use, second- or higher-order hot spots would be appropriate.  Also, some of the techniques 
discussed in Chapters 8 and 10 are also appropriate for larger area analysis.   

 
However, if the policing strategy involves working with businesses or even residents to 

develop, for example, a business- or neighborhood watch program, then the boundaries of the hot 
spot need to be defined fairly specifically, perhaps a block or two. Choosing a larger area may 
diffuse efforts and reduce the effectiveness of the intervention.  Even more precise boundary 
definition are needed for  public infrastructure improvements, such as improved lighting or 
closed circuit television systems (CCTV).  The public works departments that install these 
improvements need to know exactly where to put the lights or CCTV cameras.   

 
In other words, the analytical need is going to depend on the particular type of 

intervention or program that will be introduced and the hierarchical clusters provide a range of 
scales from which an appropriate one could be chosen. 

 
Limitation to Hierarchical Clustering 

 
There are also limitations to the technique, some technical and others theoretical.  First, 

the method only clusters incidents (points); a weighting or intensity variable will have no effect. 
In Chapter 9, we introduce a variant of the Nnh that allows weighting incidents and can be 
applied to zonal data.  The results are reasonable approximations to clusters of zones, but they 
lack the specificity of the incident data. 

 
 Second, the size of the grouping area is dependent on the sample size when the 
confidence interval around the mean random distance is used as the threshold distance criteria 
(see equation. 6.2).  For crime distributions that have many incidents (e.g., burglary), the 
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threshold distance will be a lot smaller than distributions that have fewer incidents (e.g., 
robbery).  In theory, a hot spot is dependent on an environment, not the number of incidents.  
Thus, that approach does not produce a consistent definition of a hot spot area.  Using a fixed 
distance for the threshold distance can partly overcome this.  However, the fixed distance needs 
to be tested for randomness using the Monte Carlo simulation. 
 
 Third, there is some arbitrariness in the technique due to the minimum points rule.  This 
implicitly requires the user to define a meaningful cluster size, whether the number of minimum 
points required is 5, 10, 15 or whatever.  To some extent, this is how patterns are defined by 
human beings; with one or two incidents in a small area, people do not perceive any pattern.  As 
soon as the number of incidents increases, say to 10 or more, people perceive the pattern.  This is 
not a statistical way for defining regularity, but it is a human way.  However, it can lead to 
arbitrariness since two different users may interpret the size of a hot spot differently.  Similarly, 
the selectivity of the p-value, vis-a-via the Student=s t-distribution, can allow variability between 
users.   
 
 In short, the technique produces a consistent result, but one subject to manipulation by 
users.  Hierarchical techniques are, of course, not the only clustering procedures to allow users to 
adjust the parameters; in fact, almost all the cluster techniques have this property.  But it is a 
statistical weakness in that it involves subjectivity and is not necessarily consistently applied 
across users. 
 
 Finally, there is no substantive theory or rationale behind the clusters.  They are empirical 
derivatives of a procedure.  Again, many clustering techniques are empirical groupings and also 
do not have any explanatory theory.4  If one is looking for a substantive hot spot defined by a 
unique constellation of land uses, activities, and targets, the technique does not provide any 
insight into why the clusters are occurring or why they could be related.  I will return to this 
point at the end of the next chapter, but it should be remembered that these are empirical 
groupings, not necessarily substantive ones. 
 

Risk-Adjusted Nearest Neighbor Hierarchical Clustering 
 

CrimeStat also includes a risk-adjusted nearest neighbor hierarchical clustering routine 
(Rnnh), which is a variation on the Nnh routine discussed above.  It combines the hierarchical 
clustering capabilities of the Nnh routine with kernel density interpolation technique that is 
discussed in Chapter 10. 

                         
4  A number of clustering techniques have a statistical theory behind them (e.g., Kulldorff, 1997), but not a 

substantive theory. While one can define consistent statistical criteria for identifying hot spots, this does not 
constitute an explanation for why the hot spots occurred.  For this, other information is necessary. 
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 The Nnh routine identifies clusters of points that are close together.  That is, it will 
identify groups of points that are closer together than a threshold distance and in which the 
minimum number of points is greater than a user-defined value.  Many of these clusters, 
however, are due to a high concentration of persons in the vicinity.  That is, because the 
population is not arranged randomly over a plane, but is, instead, highly concentrated in 
population centers, there is a higher likelihood of incidents happening (whatever they are) simply 
due to the higher population concentration.  In the above examples, many of the clusters for 
Baltimore burglaries or vehicle thefts were due primarily to a high concentration of households 
and vehicles in the center of the metropolitan area.  In fact, one would normally expect a higher 
concentration of incidents in the center since there are more persons residing in the center and, 
certainly, more persons being concentrated there during the daytime through employment, 
shopping, cultural attendance, and other urban activities. 
 

For many police purposes, the concentration of incidents is of sufficient interest in itself.  
Police have to intervene at high incidence locations irrespective of whether there is also a larger 
population at those locations.  The demands for policing and responding to community 
emergency needs is population sensitive since there are more demands where there are more 
persons.  From a service viewpoint, the concentration of incidents is what is important. 
 

But for other purposes, the concentration of incidents relative to the baseline population 
is of interest.  Crime prevention activities, for example, are aimed at reducing the number of 
crimes that occur for every area in which they are applied.  For these purposes, the rate of 
decrease in the number of crimes is the prime focus.  Similarly, after-school programs are aimed 
at neighborhoods where there is a high risk of crime, whether or not there is also a large 
population.  In other words, for many purposes, the risk of crime or other types of incidents is of 
paramount importance, rather than the volume (i.e., absolute amount) of crime by itself.  If the 
aim is to assess where there are high risk clusters, then the Nnh routine is not appropriate. 
 

CrimeStat includes a Risk-adjusted Nearest Neighbor Hierarchical Clustering routine (or 
Rnnh) that defines clusters of points that are closer than what would be expected on the basis of a 
baseline population.  It does this by dynamically adjusting the threshold distance in the Nnh 
routine according to the distribution of a second, baseline variable.  Unlike the Nnh routine 
where the threshold distance is constant throughout the study area (i.e., it is used to pair points 
irrespective of where they are within the area), the Rnnh routine adjusts the threshold distance 
according to what would be expected on the basis of the baseline variable.  It is a risk measure, 
rather than a volume measure. 
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Dynamic Adjustment of the Threshold Distance 
 

To understand how this works, think of a simple example. In a typical metropolitan area, 
there are more people living towards the center than in the periphery.  There are topographical 
and social factors that might modify this (e.g., an ocean, a mountain range, a lake), but in general 
population densities are much higher in the center than in the suburbs.  If a different baseline 
variable were selected than population, for example, employment, one would generally find even 
higher concentrations since central city employment tends to be very high relative to suburban 
employment.  Thus, if population or employment (or another variable that is correlated with 
population density) is taken as the baseline, then one would expect more people and, hence, more 
incidents occurring in the center rather than the periphery.  In other words, all other things being 
equal, there should be more robberies, more burglaries, more homicides, more vehicle thefts, and 
more of any other type of event in the center than in the periphery of an urban area.  This is just a 
by-product of urban societies. 
 

Using this idea to cluster incidents together, then, intuitively, the threshold distance must 
be adjusted for the varying population densities.  In the center, the threshold must be short since 
one would expect there to be more persons.  Conversely, in the periphery - the far suburbs, the 
threshold distance must be a lot longer since there are far fewer persons per unit of area.  In other 
words, dynamic adjustment of the threshold grouping distance means changing the distance 
inversely proportional to the population density of the location; in the center, a high density 
means a short threshold distance and in the periphery, a low density means a larger threshold 
distance. 
 

Kernel Adjustment of the Threshold Distance 
 

To implement this logic, CrimeStat overlays a standard grid and uses an interpolation 
algorithm, based on the kernel density method, to estimate the expected number of incidents per 
grid cell if the actual incident file was distributed according to the baseline variable.  Chapter 10 
discusses in detail the kernel density method and the reader should be familiar with the method 
before attempting to use the Rnnh routine. If not, the author highly recommends that Chapter 10  
be read before reading the rest of this section. 
 

Steps in the Rnnh Routine 
 

The Rnnh routine works as follows: 
 

1. Both primary and secondary files are required.  The primary file is the basic file 
of incidents (e.g., robberies) while the secondary file is the baseline variable (e.g., 
population of zones; all crimes as a baseline; or another baseline variable).  If the 
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baseline variable is identified by zones, the user must define both the X and Y 
coordinates as well as the variable assigned to the zone (e.g., population); the 
latter will typically be an intensity or weight variable (see Chapter 3). 

 
2. A grid is defined in the reference file tab of the data setup section (see Chapter 3).  

The Rnnh routine takes the lower-left and upper-right limits of the grid, but uses a 
standard number of columns (50). 

 
3. The area of the study is defined in the measurement parameters tab of the data 

setup section (see Chapter 3).  If no area is defined, the routine uses the area of 
the entire grid. 

 
4. The user checks the Risk-adjusted box under the Nnh routine.  The risk variable is 

estimated with the parameters defined in the Risk Parameters box.   These are the 
kernel parameters.  Without going into detail, the user must define: 
 
A. The method of interpolation, which is the type of kernel used: normal, 

uniform, quartic, triangular, or negative exponential.  The normal 
distribution is the default. 

 
B. The choice of bandwidth, whether a fixed or adaptive (variable) 

bandwidth is used.  For a fixed bandwidth, the user must define the size of 
the interval (e.g., 0.5, miles; 2 kilometers).  For an adaptive bandwidth, the 
user must define the minimum sample size to be included in the circle that 
defines the bandwidth.  The default is an adaptive bandwidth with a 
minimum sample size of 100 incidents. 

 
C. The output units, which are points per unit of area: squared miles, squared 

nautical miles, squared feet, squared kilometers, or squared meters.  The 
default is squared miles. 

 
D. Also, if an intensity or weight variable is used (e.g., the centroids of zones 

with population being an intensity variable), the intensity or weight box 
should be checked (be careful about checking both if there are both an 
intensity and a weight variable). 

 
Consult Chapter 10 for more detail about these parameters. 

 
5. Once the baseline variable (the secondary file) is interpolated to the grid using the 

above parameters, it is converted into absolute densities (points per grid cell) and 
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re-scaled to the same sample size as the primary incident file.  This has the effect 
of making the interpolation of the baseline variable the same sample size as the 
incident variable.  For example, if there are 1000 incidents in the primary file, the 
interpolation of the secondary file will be re-scaled so that all grid cells add to 
1000 points, irrespective of how many units the secondary variable actually 
represented.  This creates a distribution for the primary file (the incidents) that is 
proportional to the secondary file (the baseline variable) if the primary file had the 
same distribution as the secondary file.  It is then possible to compare the actual 
distribution of the incident variable with the expected distribution if it was similar 
to the baseline variable. 

 
6. Once the risk parameters have been defined, the selection of parameters is similar 

to the Nnh routine with one exception. 
 

A. The threshold probabilities are selected with the scale bar. The 
probabilities are identical to those in Table 7.2. 

 
B. However, for each grid cell, a unique threshold distance is defined using 

formulas similar to equations 7.1 and 7.2.  The difference is, however, that 
the formulas are applied to each grid cell with a unique distance for each 
grid cell (formulas 7.5-7.8): 

 

 	 	 	 	 	 	 0.5            (7.5) 

 
where Ai is the area of the grid cell and Ni is the estimated number of 
points from the kernel density interpolation.  Thus, each grid cell has its 
own unique expected number of points, Ni, its own unique area, Ai 
(though, in general, all grid cells will have approximately equal areas), 
and, consequently, its own unique threshold distance. 

 
 	 	 	 	 	 	 	 	 	 	   
 

 =0.5 .
          (7.6) 

 
where the Mean Random Distance of Grid Cell i, Ai and Ni are as defined 
above, t is the t-value associated with a probability level in the Student=s t-
distribution (defined by the scale bar). 
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   The lower limit of this confidence interval is: 
    
 	 	 	 	 	 	 	 	 	 	 	 	  
 

 0.5 .
             (7.7) 

 
   and the upper limit of this confidence interval is 
 
 	 	 	 	 	 	 	 	 	 	 	 	  
 

 0.5 .
             (7.8) 

 
C. In addition, the user defines a minimum sample size for each cluster, as 

with the Nnh routine. 
 

6. The actual incident points are then identified by the grid cell that they fall within 
and the unique threshold distance (and confidence interval) for that grid cell.  For 
each pair of points that are compared for distance, there is, however, asymmetry 
since the threshold distance for each point may be different if they are in different 
grid cells.  That is, the unique threshold distance for point A will not necessarily 
be the same as that for point B.  The Rnnh routine, therefore, requires the distance 
between each pair of points to be the shorter of the two distances between the 
points. 

 
7. Once pairs of points are selected, the Rnnh routine proceeds in the same way as 

the Nnh routine. 
 

In other words, points are clustered together according to two criteria.  First, they must be 
closer than a threshold distance.  However, the threshold distance varies over the study area and 
is inversely proportional to the baseline variable.  Only points that are closer together than would 
be expected on the basis of the baseline variable are selected for grouping.  Second, clusters are 
required to have a minimum number of points with the minimum being defined by the user.  The 
result is clusters that are more concentrated than would be expected, not just from chance but, 
from the distribution of the baseline variable.  These are high risk clusters. 
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 Guidelines for Selecting Parameters 
 
 The guidelines for selecting parameters in the Rnnh routine are similar to the Nnh except 
the user must also model the baseline variable using a kernel density interpolation.   There are 
several guidelines that should be followed in developing the model. 
 

Area must be defined correctly 
 

First, it is essential that area be defined correctly for this routine to work. If the user 
defines the area on the measurement parameters page (see chapter 3), the Rnnh routine uses that 
value to calculate the area of each grid cell and, in turn, the grid-specific threshold distance.  If 
the user does not define the area on the measurement parameters page, the routine calculates the 
total area from the minimum and maximum X/Y values (the bounding rectangle) and uses that 
value to calculate the area of each grid cell and, in turn, the grid-specific threshold distance.  In 
either case, the routine will be able to calculate a threshold distance for each grid cell and run the 
routine.   

 
However, if the area units are defined incorrectly on the measurement parameters page, 

then the routine will certainly calculate the grid cell-specific threshold distances wrongly.  For 
example, if data are in feet but the area on the measurement parameters page are defined in 
square miles, most likely the routine will not find any points that are farther apart than any of the 
grid cell threshold distances since each distance will be defined in miles.  In other words, it is 
essential that the area units be consistent with the data for the routine to properly work. 
 
  Use kernel bandwidths that produce stable estimates 
 

Second, the bandwidth for the baseline variable must be defined in such a way as to 
produce a stable density estimate of the variable.  Be careful about choosing a very small 
bandwidth. This could have the effect of creating clusters at the edges of the study area or very 
large clusters in low population density areas.  For example, in low population density areas, 
there will probably be fewer persons or events than in more built-up areas.  This will have the 
effect on the Rnnh calculation of producing a very large matching distance.  Points that are quite 
far apart could be artificially grouped together, producing a very large cluster. Using a larger 
bandwidth will usually produce a more stable average. 
 
 The process is a little like tuning a shortwave radio, adjusting the dial until the signal is 
detected. We suggest that the user first develop a good density model for the baseline variable 
(see Chapter 10).  The user has to develop a trade-off between identify areas of high and low 
population concentration to produce an estimate that is statistical reliable (stable).  
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 One can think of two types of >fine tuning= that must occur.  One is the >background= 
variation that has to be tuned (the baseline >at risk= variable).  This is done through the kernel 
density interpolation.  If too narrow a bandwidth is selected, the density surface will have 
numerous undulations with small >peaks= and >valleys=; this could produce unreal and unstable 
risk estimates.  A grid cell with a very small density value could produce an extremely large 
threshold distance whereas a grid cell with a very low density could produce an extremely small 
threshold distance.  Conversely, if too large a bandwidth is selected, the density surface will not 
differentiate very well and each grid cell will have, more or less, the same threshold distance.  In 
this case, the Rnnh routine would yield a result not very different from the Nnh routine.   
 
 Another is the tuning of the clusters themselves through the threshold adjustment and 
minimum size criteria.  If a large threshold probability is selected, too many incidents may be 
grouped; conversely, if a small threshold probability is selected, the result may be too restrictive.  
Similarly, if a small minimum sample size for clusters is used, there could be too many clusters 
whereas the opposite will happen if a large minimum sample size is chosen (i.e., zero clusters).  
The user must experiment with both these types of adjustment to produce a sensible cluster 
solution that captures the areas of high risk, but no more.   
 
 Example 2: Simulated Rnnh Clustering 
 
 To illustrate the logic of the Rnnh routine, a simulated example is presented.  Two 
hundred points (incidents) were assigned to eight groups in the Baltimore metropolitan region 
(Figure 7.10).  The figure shows the points in relation to year 2000 population density.   Each 
group contained 25 individual points that were grouped exactly the same. However, three of the 
groups were placed in more dense areas of the region - one in central Baltimore, one in Towson 
to the north, and one is Reisterstown to the north east.  The other five groups were placed in less 
populated areas.  The Nnh and Rnnh routines were compared with these data.  One would expect 
the Nnh routine to cluster the 200 points into eight groups whereas the Rnnh routine should 
identify only five groups in the low density areas.  The reason for three of the groups not being 
clustered by the Rnnh is due to their higher population densities; all other things being equal, 
there should be more incidents in higher density areas than in lower density areas.  Figures 7.11 
and 7.12 show exactly this solution.   
 
 In other words, the Nnh routine clustered the points together irrespective of the 
distribution of the baseline population whereas the Rnnh routine clustered the points together 
relative to the baseline population (in this case, population).  The specific parameter used were 
the default threshold distance (random nearest neighbor distance), a minimum of 15 points per 
cluster, and, for the Rnnh parameters, a normal kernel with a fixed interval of 0.5 miles. 
 
  



Figure 7.10:



Figure 7.11:



Figure 7.12:
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 Rnnh Output Files 
 
 The output files are similar to the Nnh routine.  The Rnnh routine has three outputs. First, 
final seed locations of each cluster and the parameters of the selected standard deviational ellipse 
are calculated for each cluster. These can be output to a =.dbf= file or saved as a text (>.txt=) file.  
Only 45 of the seed locations are displayed on the screen.  The user can scroll down or across by 
adjusting the horizontal and vertical slider bars and clicking on the Go button. 
 
 Second, for each order that is calculated, CrimeStat calculates the mean center of the 
cluster.  This can be saved as a >.dbf= file.  Third, either standard deviational ellipses or convex 
hulls of the clusters can be saved in in ArcGIS >.shp=, MapInfo >.mif=, Google Earth ‘kml’ (if the 
coordinates are spherical), or various Ascii formats. Again, the convex hulls display polygons 
around the incidents whereas the ellipses are determined by the number of standard deviations to 
be calculated (see above).   For small geographical area a 1X standard deviational ellipse may be 
appropriate since a 1.5X or 2X standard deviational ellipse can create an exaggerated view of the 
underlying cluster.  On the other hand, for a regional view, a 1X standard deviational ellipse may 
not be very visible.  The user has to balance the need to accurately display the cluster compared 
to making it easier for a viewer to understand its location. 
 
 As with the Nnh second- and higher-order clusters, these may cover incidents that were 
not clustered in the first-order.  Thus, one has to be careful in interpreting second- and higher-
order clusters.  Essentially, these are abstractions made up of first-order clusters.  In the routine, 
the first-order clusters are the primary clusters while the higher-order ones are ways to group the 
first-order clusters. 
 
  Naming conventions for ellipses 

 
Because there are also orders of clusters (i.e., first-order, second-order, etc.), there is a 

naming convention that distinguishes the order.   
 

For the ellipses, the convention is 
 

Rnnh<O><username> 
 
where O is the order number and username is a name provide by the user.  Thus, 
 

Rnnh1robbery 
 
are the first-order clusters for a file called >robbery= and 
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Rnnh2burglary 
 
are the second-order clusters for a file called >burglary=.  Within files, clusters are named 
 

Rnnh<O>Ell<N><username> 
 
where O is the order number, N is the cluster number and username is the user-defined name of 
the file.  Thus, 
 

Rnnh1Ell10robbery 
 
is the tenth cluster within the first-order clusters for the file >robbery= while  
 

Rnnh2Ell1burglary 
 
is the first cluster within the second-order clusters for the file >burglary=. 
 

For the convex hulls, the cluster numbers are the same as the ellipses but the prefix name 
is output with a >CRNNH1= prefix for the first-order clusters, a >CRNNH2= prefix for the 
second-order clusters, and a >CRNNH3= prefix for the third-order clusters.  Higher-order clusters 
will index only the number.   
 

Example 3: Rnnh Clustering of Vehicle Thefts 
 

A second example is the clustering of 2003 San Antonio robberies relative to the 2000 
population of census block groups.  The test is for clusters of robberies that are more 
concentrated than would be expected on the basis of the population distribution.5  Using the 
default threshold probabilities, a minimum sample size per cluster of 10, but a normal kernel 
function with a 0.5 mile fixed bandwidth, the Rnnh routine identified five first-order and one 
second-order cluster (Figure 7.13); the incidents are not shown.   
 
 Compare this distribution with the results of the Nnh on the same data, using the same 
parameters (Figure 7.14).  The Nnh found 9 first-order clusters and one second-order cluster. To 
illustrate the differences in the baseline population, the ellipses of both the regular (Nnh) and 
risk-adjusted (Rnnh) clusters are overlaid on top of 2000 population density of census block 
groups.    The cluster locations where there are both high volume (Nnh) and high-risk (Rnnh) 
involve two areas of low population density (just north of downtown) and one area of high 

                         
5  It is not an exact risk test since we are comparing 2003 robberies with 2000 population.  It is an 

approximate risk test. 



Figure 7.13:



Figure 7.14:
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population density (just outside the downtown area); in this latter case, the number of robberies 
is so high that the area is both high volume and high risk. The fifth overlapping cluster is to the 
west of downtown and is an area of moderate population density. On the other hand, the four 
regular cluster locations that are only high volume (Nnh only) are in areas of low to moderate 
population density.  In other words, the Rnnh routine identified areas of high risk for robberies 
whereas the Nnh routine identified areas of high volume. 
 
 Simulating Statistical Significance 

 
 Because the sampling distribution of the clustering method is not known, the Rnnh 
routine allows Monte Carlo simulations to approximate confidence intervals, similar to the Nnh 
routine (Dwass, 1957; Barnard, 1963).  The output is identical to the Nnh routine.  Essentially, it 
produces credible intervals for the number of first-order clusters, the area of clusters, the number 
of points in each cluster, and the density of each cluster. Second- and higher-order clusters are 
not simulated since their structure depends on the first-order clusters. The user can see whether 
the first-order cluster structure is different than that which is produced by a random distribution. 
See the notes above under Nnh for more details.   
 
 Uses of the Technique 
 
 The risk-adjusted nearest neighbor hierarchical clustering routine has several uses.  First, 
like the high volume nearest neighbor hierarchical clustering (Nnh) routine, it allows a hierarchy 
of clusters to be identified, from first-order to second- or higher-order.  As we see repeatedly 
with population dynamics, spatial clusters are frequently clustered together.  One can think of 
them as small zones of concentrated events that are, in turn, close to other zones of concentrated 
events. 
 
 Second, unlike the Nnh, the Rnnh routine allows these clusters to be defined in terms of 
risk.  Thus, it controls for the predominance of the population at risk.  This is particularly 
important in epidemiological studies where the number of disease incidents is always related to 
the population at risk. The risk indicates a location where there are factors that are causing the 
disease to erupt.  But, in crime analysis, too, analyzing incidents in relation to the number of 
potential victims can indicate problem neighborhoods where additional factors are triggering the 
outbreak (e.g., particular land uses that encourage disorder such as bars or pawn shops; poor 
social cohestion).  Crime prevention efforts, in particular, often target neighborhoods of high risk 
and not just high volume of incidents. The Rnnh can be a valuable tool in the identification of 
such neighborhoods. 
 
 Third, the Rnnh routine goes beyond simply clustering events on the basis of proximity 
and frequency and applies a single variable that can account for the distribution.  In other words, 
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the baseline variable is the first step in developing a model for explaining the distribution of the 
incidents, in this case the baseline variable itself.  In addition to focusing policing efforts on high 
volume or high risk neighborhoods, there needs to be an effort to build a statistical model of the 
phenomenon itself, both for prediction as well as for theory development. 
 
 Limitations of the Technique 
 

However, as with all methods, there are some limitations of the technique that are partly 
shared with the Nnh routine.  First, the method only clusters incidents (points); a weighting or 
intensity variable will have no effect. In Chapter 9, we will introduce a zonal variant of the Rnnh 
that allows a risk measure to be applied to zonal data.  But, the Rnnh by itself is only applicable 
to individual point locations. 

 
Second, the size of the grouping area is dependent on the sample size if the confidence 

interval around the mean random distance is used as the threshold distance criteria.  However, 
since the threshold distance is adjusted dynamically, this has less effect than in the Nnh since it is 
now a relative comparison rather than an absolute distance.  
 

Third, there is arbitrariness in the technique due to the minimum points rule. Different 
users could define the minimum differently, which could lead to different conclusions about the 
location of high risk clusters.  Finally, unique to the Rnnh, the method requires both an incident 
file (the primary file) and a baseline file (the secondary file.   
 

Nevertheless, the Rnnh routine is a useful technique for identifying clusters that are more 
concentrated than would be expected on the basis of the population distribution.  
  



7.53 

References 
 
Anselin, L. (1995).  Local indicators of spatial association - LISA.  Geographical Analysis.  27, 
No. 2 (April), 93-115. 
 
Bailey, T. C. & Gatrell, A. C. (1995). Interactive Spatial Data Analysis.  Longman Scientific & 
Technical: Burnt Mill, Essex, England. 
 
Ball, G. H. & Hall, D. J. (1970).  A clustering technique for summarizing multivariate data.  
Behavioral Science, 12, 153-155. 
 
Barnard, G. A. (1963).  Comment on ‘The Spectral Analysis of Point Processes’ by M. S. 
Bartlett, Journal of the Royal Statistical Society, Series B, 25, 294. 
 
Beale, E. M. L. (1969).  Cluster Analysis.  Scientific Control Systems: London. 
 
Bezdek, J. C. (1981). Pattern Recognition with Fuzzy Objective Function Algorithms.  Plenum 
Press: New York. 
 
Block, C. R. (1994).  STAC hot spot areas: a statistical tool for law enforcement decisions.  In 
Proceedings of the Workshop on Crime Analysis Through Computer Mapping.  Criminal Justice 
Information Authority: Chicago, IL. 
 
Block, R. & Block, C. R. (1999) Risky places: a comparison of the environs of rapid transit 
stations in Chicago and the Bronx in John Mollenkopf (ed),  Analyzing Crime Patterns: 
Frontiers of Practice, Sage Publishing: Beverly Hills, CA. 
 
Block, R. & Block, C. R. (1995). Space, place and crime: hot spot areas and hot places of liquor-
related Crime in John E. Eck & David Weisburd (eds.), Crime and Place. Crime Prevention 
Studies, Volume 4. Criminal Justice Press: Monsey, NY. 147-185. 
 
Braga, A. &  Weisburd, D. (2010).  Policing Problem Places: Crime Hot Spots and Effective 
Prevention. Oxford: Oxford University Press. 
 
Can, A. & Megbolugbe, I. (1996). The geography of underserved mortgage markets.  Paper 
presented at the American Real Estate and Urban Economics Association meeting.  May. 
 
Carmichael, J. W., George, L.A. & Julius, R.S. (1968). Finding natural clusters. Systematic 
Zoology, 17, 144-150. 



7.54 

References (continued) 

 
Cattell, R. B. & Coulter, M.A. (1966). Principles of behavioural taxonomy and the mathematical 
basis of the taxonome computer program. British Journal of Mathematical and Statistical 
Psychology, 19, 237-269. 
 
Chainey, S., Thompson, L. & Uhlig, S. (2008).  The utility of hotspot mapping for predicting 
spatial patterns of crime.  Security Journal, 21, 4-28. 
 
Cole, A. J. & Wishart, D. (1970).  An improved algorithm for the Jardine-Sibson method of 
generating overlapping clusters.  Comparative Journal, 13, 156-163. 
 
D'andrade, R. (1978). U-Statistic Hierarchical Clustering Psychometrika, 4,58-67.  
 
Dwass, M (1957).  Modified randomization tests for nonparametric hypotheses. Annals of 
Mathematical Statistics, 28, 181-187. 
 
Everitt, B. S. (2011).  Cluster Analysis (5th edition). J. Wiley: London.  
 
Everitt, B. S., Landau, S. & Leese, M. (2001).  Cluster Analysis. 4th Edition. Oxford University 
Press: New York. 
 
Getis, A. & Ord, J. K. (1996). Local spatial statistics: an overview.  In Longley, P. & Batty, M. 
(eds), Spatial Analysis: Modelling in a GIS Environment. GeoInformation International: 
Cambridge, England, 261-277. 
 
Gitman, I. & Levine, M. D. (1970). An algorithm for detecting uniomodal fuzzy sets and its 
application as a clustering technique.  IEE Transactions on Computers, 19, 583-593. 
 
Hartigan, J. A.  (1975). Clustering Algorithms.  John Wiley & Sons, Inc.: New York. 
 
Jardine, N. & Sibson, R. (1968).  The construction of hierarchic and non-hierarchic 
classifications.  Comparative Journal, 11, 117-184. 
 
Jefferis, E. (1998).  A multi-method exploration of crime hot spots.  Crime Mapping Research 
Center, National Institute of Justice: Washington, DC. 
 
Johnson, S. C. (1967), Hierarchical Clustering Schemes Psychometrika, 2,241-254. 
 



7.55 

References (continued) 

 
Jones, K. S. & Jackson, D. M. (1967). Current approaches to classification and clump finding at 
the Cambridge Language Research Unit.  Comparative Journal, 10, 29-37. 
 
King, B. F. (1967).  Step wise clustering procedures.  Journal of the American Statistical 
Association. 62, 86-101. 
 
Kulldorff, M. (1997).  A spatial scan statistic, Communications in Statistics - Theory and 
Methods, 26, 1481-1496. 
 
Kulldorff, M. & Nagarwalla, N. (1995).  Spatial disease clusters: Detection and inference, 
Statistics in Medicine, 14, 799-810. 
 
Levine, N. (2008). “The ‘hottest’ part of a crime hotspot:  Comments on “The utility of hotspot 
mapping for predicting spatial patterns of crime” by Chainey, S. Thompson, L. & Uhlig, S.”.  
Security Journal, 21, 295-302. 
 
Levine, N., Wachs, M. & Shirazi, E. (1986). "Crime at Bus Stops: A Study of Environmental 
Factors". Journal of Architectural and Planning Research. 3 (4), 339-361. 
 
MacQueen, J. (1967).  Some methods for classification and analysis of multivariate observations. 
5th Berkeley Symposium on Mathematics, Statistics and Probability. Vol 1, 281-298. 
 
McBratney, A. B. & deBruijter, J. J. (1992). A continuum approach to soil classification by 
modified fuzzy k-means with extragrades, Journal of Soil Science, 43, 159-175. 
 
McQuitty, L. L. (1960).  Hierarchical syndrome analysis.  Educational and Psychological 
Measurement, 20, 293-304. 
 
Maltz, M. D., Gordon, A. C., & Friedman, W. (1990).  Mapping Crime in Its Community Setting: 
Event Geography Analysis. Springer-Verlag: New York. 
 
Needham, R. M. (1967). Automatic classification in linguistics. The Statistician, 17, 45-54. 
 
Openshaw, S. A., Craft, A. W., Charlton, M., & Birch, J. M. (1988). Invetigation of leukemia 
clusters by use of a geographical analysis machine, Lancet, 1, 272-273. 
 
 



7.56 

References (continued) 

 
Openshaw, S. A., Charlton, M, Wymer, C, & Craft, A. (1987).  A Mark 1 geographical analysis 
machine for the automated analysis of point data sets.  International Journal of Geographical 
Information Systems, 1, 335-358. 
 
Sherman, L. W. & Weisburd, D. (1995). General deterrent effects of police patrol in crime hot 
spots: a randomized controlled trial.  Justice Quarterly. 12, 625-648. 
 
Sherman, L. W.., Gartin, P. R. & Buerger, M. E. (1989).  Hot spots of predatory crime: routine 
activities and the criminology of place.  Criminology, 27(1), 27-56. 
 
Silverman, B. W. (1986).  Density Estimation for Statistics and Data Analysis.  Chapman & 
Hall: London. 
 
Sneath, P. H. A. (1957).  The application of computers to taxonomy.  Journal of General 
Microbiology, 17, 201-226. 
 
Sokal, R. R. & Sneath, P. H. A. (1963).  Principles of Numerical Taxonomy.  W. H. Freeman & 
Co.: San Francisco. 
 
Sokal, R. R. & Michener, C. D. (1958).  A statistical method for evaluating systematic 
relationships.  University of Kansas Science Bulletin, 38, 1409-1438. 
 
Systat, Inc. (2008).  Systat 13: Statistics I.  SPSS, Inc.: Chicago. 
 
Thorndike, R. L. (1953).  Who belongs in a family?.  Psychometrika, 18, 267-276. 
 
Ward, J. H. (1963).  Hierarchical grouping to optimize an objective function.  Journal of the 
American Statistical Association. 58, 236-244. 
 
Weisburd, D. & Green, L. (1995). Policing drug hot spots: the Jersey City drug market analysis 
experiment. Justice Quarterly. 12 (4), 711-735. 
 
Weisburd, D., Maher, L.& Sherman, L. (1992).  Contrasting crime general and crime specific 
theory: the case of hot-spots of crime.  Advances in Criminological Theory, 4, 45-70. 
 
Weishart, D. (1969). Mode analysis.  In Cole, A. J. (ed), Numerical Taxonomy, Academic Press: 
New York. 



7.57 

References (continued) 

 
Xie, X. L. & Beni, G. (1991).  A validity measure for fuzzy clustering.  IEEE Trans. Pattern 
Analysis Machine Intell., 13, 841-847. 
 

  



7.58 

Endnotes 

 
i. The particular steps are as follows: 
 

1. All distances between pairs of points are calculated, using either direct or indirect 
distance as defined on the measurements parameters page.  The matrix is assumed 
to be symmetrical, that is the distance between A and B is assumed to be identical 
to the distance between B and A. 
 

2. The mean expected random distance is calculated using formula 6.2 and the 
threshold distance (the confidence interval for the corresponding t) is calculated 
using formulas 7.2 and 7.3 depending on whether it is a lower or upper confidence 
interval.  The particular interval is selected by the user on the slide bar. 

 
3. All pairs that are separated by a distance smaller than the threshold distance are 

selected for clustering and placed in a reduced matrix.  Any incident point that 
does not have another point within the threshold distance is not clustered.  

 
4. In the reduced matrix, for each point the number of other points that are within the 

threshold distance are counted and are sorted in descending order. 
 
5. The incident point with the largest number of below threshold distances is 

selected for the initial seed of the first cluster. 
 
6. All other points that are within the threshold distance of the initial seed point are 

selected for the initial cluster 1 and temporarily removed from the reduced matrix. 
 
7. The process is repeated for the remaining points in the reduced matrix (i.e., an 

initial seed is selected, all points within the threshold distance of that seed are 
clustered, and all the points are temporarily removed). 

 
8. For each of the initial clusters that were identified, the center of minimum 

distance (CMD) is calculated to identify the cluster center. 
 
9. The clustering process is repeated but using the CMD for each cluster to define 

each cluster.  This process continues until no points change their cluster 
membership. 
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Endnotes (continued) 

 
10. Once all the points in the reduced matrix have been initially clustered, the total 

number of points within each initial cluster is counted.  If the number is equal to 
or greater than the minimum specified, then the cluster is kept.  If the number is 
less than the minimum specified, then the cluster is dropped.  

 
11. The final clusters are sorted in descending order of the number of points and the 

mean center of each is calculated to identify the cluster center. 
 
12. The second- and higher-order clusters use the CMD of the first-order clusters as 

‘points’ and follow the same algorithm. 
 

ii. The particular steps are as follows: 
 

1. Using the same p-values selected in the first-order, the mean random expected 
distance is calculated.  However, the sample size is the number of first-order 
clusters identified, not the original number of points.  Thus, the threshold distance 
is calculated by 
 
 	 	 	 ∗      (7.8) 

  
where dNN2(ran)  is random nearest neighbor distance among the first-order clusters 
(i.e., with M first-order clusters rather than N points) and SEd1(ran) is the standard 
error of the random nearest neighbor distance among the first-order clusters. 
Thus, there is a different threshold distance for the second-order clustering.  The 
t-value specified in the first-order clustering is maintained for second- and higher-
order clustering. 

 
2. All distances between first-order cluster centers are calculated and only those that 

are smaller than the second-order threshold distance are selected for second-order 
clustering. 

 
3. If there are no distances between first-order cluster centers that are smaller than 

the second-order threshold distance, then the clustering process ends. 
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Endnotes (continued) 

 
4. If there are distances between first-order cluster centers that are smaller than the 

second-order threshold distance, then the steps specified in endnote  above are 
repeated to produce second-order clusters.  A minimum of four first-order clusters 
is required to allow a second-order cluster and four previous-order clusters to 
allow a higher-order cluster. 

 
5. If there are second-order clusters, then this process is repeated to either extract 

third-order clusters or to end the clustering process if no distances between 
second-order cluster centers are smaller than the (new) third-order threshold 
distance or if there are fewer than four new seeds in the cluster. 

 
6. The process is repeated until no further clustering can be conducted, either all 

sub-clusters converge into a single cluster or the threshold distance criteria fails or 
there are fewer than four seeds in the higher-order cluster. 
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Attachments 

 
 

 



Visualizing Change in Drug Arrest Hot Spots 
Using Nearest Neighbor Hierarchical Clustering: 

Charlotte, N.C.  1997 – 98 
 

James L. LeBeau 
Administration of Justice 

Southern Illinois University at Carbondale 
 

Stephen Schnebly 
Criminology & Criminal Justice 
University of Missouri – St Louis 

 
 The CrimeStat Nearest Neighbor Hierarchical clustering routine and GIS 
were used for defining, comparing, analyzing, and visualizing changes in drug arrest 
clusters between 1997 and 1998.  Using a minimum cluster size of 25 arrests some of 
the emerging patterns or relationships include: 1) the overlapping of secondary 
clusters, but those emerging during 1998 were much larger, especially in the north 
because of new primary clusters; 2) many primary clusters during 1997 remaining 
static or increasing in area during 1998; and 3) the disappearing of some 1997 
primary clusters during 1998, with new clusters emerging close by implying 
displacement. 

 
 
 

N = 30

N = 29

N = 4

N = 3

1998

1997

Clusters
Primary Secondary

 Total
Arrests

4766

4802

Minimum
Cluster 
 Size 

Source:CMPD

25

j.l.l.01 
 



Using Nearest Neighbor Hierarchical Clustering to 
Identify High Crime Areas Along Commercial Corridors 

 
Philip R. Canter 

Baltimore County Police Department 
Towson, Maryland 

 
Robberies in Baltimore County had increased by 45% between 1990 and 199, and by 

1997, were the highest on record. In 1997, 73% of all reported robberies in Baltimore County 
were occurring in commercial areas. The department wanted to target commercial districts 
with intensive patrol and outreach programs. These high crime commercial districts were 
identified as Business Patrol Initiative (BPI) areas. A total of 40 police officers working two 8-
hour shifts were assigned to BPI areas. Robberies in the BPI areas declined by 26.7% during 
the first year of the program and another 13.8% one year following the BPI program. 

 
Police analysts used CrimeStat’s Nearest Neighbor Hierarchical clustering (Nnh) 

method to identify high crime areas along commercial corridors. The Nnh routine was very 
effective in identifying commercial areas having the highest concentration of crime. The 
clustering also demonstrated that commercial crime was not restricted to county borders; 
rather, crime crossed municipal boundaries into neighboring jurisdictions. A neighboring 
jurisdiction was shown the crime cluster map, leading to their decision to implement a 
similar BPI program.  
 
 

County Line 

Nearest Neighbor
Hierarchical Cluster

Business Patrol Initiative Area 



Arrest Locations as a Means for Directing Resources 
 

 Daniel Bibel 
Massachusetts State Police 

Crime Reporting Unit 
Framingham, Massachusetts 

 
The Massachusetts State Police is collecting incident addresses as part of its 

state-level implementation of the FBI’s National Incident Based Reporting System 
(NIBRS).  They intend to develop a regional and statewide crime mapping and 
analysis program.  As an example of the type of analysis that can be done with the 
enhanced NIBRS database, the State Police’s Crime Reporting Unit analyzed year 
2000 drug arrests for one city in the Commonwealth, focusing on arrests for 
possession of heroin and marijuana.  The arrest locations were plotted, with the size 
of points proportionate to the amount of drugs seized.  A nearest neighbor clustering 
analysis was done of the data.  It indicates that, while there is some small amount of 
overlap, the arrest locations for the two drug types are generally different. 
 

This type of analysis can be very useful for smaller police agencies that do not 
have the resources to conduct their own analysis of crime data.  It may also prove 
useful for crime problems with cross-jurisdictional boundaries. 
 
 



Use of CrimeStat in Crime Mapping in India: 
An Application for Chennai City Policing 

 
Jaishankar Karuppannan 

Department of Criminology & Criminal Justice 
Manonmaniam Sundaranar University 

Tamil Nadu, India 
 

The present study was done as an implementation of GIS technology in 
Chennai (Madras), India.  In the present study hotspot analysis was done with the 
help of CrimeStat. We converted the output to Arcview shape files. 

 
When hotspot analysis examined changes over a period of time, the change 

seemed to be significant. There exists not only a change in the location of the 
hotspots, but also in their areal extent. The numbers of hotspots also differ over 
time. The map shows hotspots for residential burglary for both day and night. The 
hot spots for daytime house break-ins are confined to a smaller area in the west of 
the city, whereas the hot spots for nighttime residential break-ins are seen in all 
parts of the city.  In particular, the Posh area of Anna Nagar is more prone to 
daytime burglaries. In this area, a higher proportion of couples work, which appears 
to make the homes in this neighborhood more open for burglaries.  

 
 

 



Identifying Duplications in Genomic Data 
Using the CrimeStat  Nearest Neighbor Hierarchical Spatial Clustering Routine 

Nathalie Pavy and Jean Bousquet 
Université Laval,G1K 7P4 Québec, QC, Canada, nathaliepavy@yahoo.fr 

Sequencing projects provide the foundation for studying the organization of whole genomes. 
Comparisons of genomic sequences from related species provide a new insight into genome 
evolution for instance by showing locally conserved chromosomic segments. Detecting such 
conservation is far from trivial. Indeed, chromosome rearrangements, duplications and gene losses 
may hide traces of ancestry. The Nearest Neighbor Hierarchical Clustering routine (NNH) was 
applied to analyze regions duplicated between Arabidopsis chromosomes 2 and 4. These are well 
known for sharing similar series of genes derived from segmental duplication. Based on sequence 
similarities, each gene located on chromosome 2 was associated to one or several similar genes 
located on chromosome 4. Coordinates used as input for the NNH routine were the gene ranks 
along the chromosomes. A total of 53 clusters made of at least 6 similar genes were recovered. The 
significance of this finding was assessed with 1000 Monte Carlo simulations; only three clusters 
would be expected by chance alone (P>0.01). The gene clusters identified with the NNH approach 
were consistent with known duplicated chromosomic regions. The clusters found by using the NNH 
approach were vizualised with the GIS software CartoMapTM. This graphical representation 
highlights in a visually comprehensive way the patterns of duplicated regions. The shape of the 
clusters and the relative positions of these reflect various evolutionary events that led to the 
structure of the present genome, as shown below (top-left): linear patterns indicate large segmental 
duplications with conserved gene order with or without inversion, and large dots indicate more 
condensed gene clusters. 

Clusters of at least six genes found on Arabidopsis chromosome 2 and duplicated on chromosome 4. 
Clusters found with the NNH routine and visualized with 
CartoMapTM [http://www.cartoworld.com/cartomap.htm] 

Clusters extracted from the Paralogon database 
[http://wolfe.gen.tcd.ie/athal/dup] 

 

 

Dot-Plot obtained by using DAGchainer 
[http://dagchainer.sourceforge.net/] [Haas et al., 2004, Bioinformatics 

20:3643-3646] 

  

 



Risk Adjusted Nearest Neighbor Hierarchical Clustering of Tuberculosis 
Cases in Harris County, Texas: 1995 to 1998 

 
 Matthew L. Stone, MPH 

Epidemiology and Program Evaluation Unit 
 University of California at San Francisco/California Department of Health Services 
 Sacramento, CA 
 
 Data was collected from an ongoing, population-based, active surveillance and 
molecular epidemiology study of tuberculosis cases reported to the City of Houston 
Tuberculosis Control Office from October 1995 to September 1998.  During this time, 1774 
cases of tuberculosis were reported and 1480 of those who participated in this study were 
successfully geocoded. 
 
 CrimeStat was used to make an initial survey of potential hot spot areas of 
tuberculosis cases where more focused TB control efforts could be implemented.  Given a 
.05 level of significance for grouping a pair of points by chance and a minimum of five cases 
per cluster, 24 first-order clusters and one second-order cluster were detected after 
adjusting for the underlying population.  Most first-order clusters were detected in the 
center of Harris County, including the metropolitan downtown area.  By adjusting for the 
underlying population, the clusters identify areas with higher than average TB incidence. 
Some of these clusters are homeless shelters as many homeless persons are particularly 
prone to TB.  
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Using Risk Adjusted Nearest Neighbor Hierarchical Clustering to 
Compare Actual and Media Hotspots of Homicide 

 
Derek J. Paulsen 

Department of Criminal Justice and Police Studies 
Eastern Kentucky University 

 
Crimestat offers an excellent method for determining risk adjusted hot spots 

of crime incidents within a jurisdiction.  Risk-adjusted nearest neighbor hierarchical 
spatial clustering (Rnnh) is a spatial clustering routine that groups points together 
based on both proximity to other points and the distribution of a baseline variable.  
In this example two different Rnnh analyses were conducted and compared for 
homicides in Houston, Texas. The first involves homicide incident locations adjusted 
for the population of each census tract, while the second involves incidents that were 
covered in the newspaper adjusted for the homicide rate of each census tract. The 
purpose of this analysis is to determine if there are differences in the spatial 
clustering of actual homicide incidents and those that are covered in the newspaper.   
 
 The preferences for the analysis were the same for both Rnnh analyses.  For 
the primary file (homicide incidents & incidents covered in the newspaper) the pair 
probability search radius was set at .01, with a minimum of 10 points per cluster.  
For the secondary file (population & homicide rate), a quartic kernel density 
interpolation was used with an adaptive bandwidth and a minimum sample size of 
100.  Importantly, the analysis showed that media hot spots and actual hot spots do 
not coincide. Media coverage showed homicides to be concentrated in different areas 
than they are actually concentrated. 
 
Actual Homicide Hot Spots vs. Media Coverage Hot Spots in Houston Texas 



Seizures of Tiger Parts and Derivatives in India during 2000 – 2012 
 

Sarah Stoner 
TRAFFIC International 

Kuala Lumpur, Malaysia 
 

India is home to over half of the world’s wild Tiger population and as a consequence records 
the greatest number of seizures globally. Since 2000, 336 seizures have been reported equating to an 
estimated 529 dead Tigers. Hotspot analysis of Tiger seizures has never been conducted in India and 
determining where clusters of activity exist is problematic. 
 

Using the Crimestat nearest neighbour hierarchical clustering routine (Nnh), five significant 
clusters of seizures were identified. ArcGIS was used to map both the seizures and one standard 
deviational ellipses and were overlaid on tiger distribution and Protected Area* layers.  Four of the 
ellipses were related to towns or cities which are also within close proximity of a Tiger reserve. 
Furthermore, transboundary trading of Tigers is prevalent but often securing agreement to combat 
trade at this level is challenging. Two clusters were also close to the borders of Nepal and Bangladesh. 
These findings will create leverage for law enforcement agencies to focus on the areas where seizures 
are most likely to occur to affect the greatest impact and will help create collaborative partnerships 
with neighbouring countries to tackle the issue at a regional level. 
 
*A clearly defined geographical space, recognised, dedicated and managed, through legal or other effective means, to 
achieve the long-term conservation of nature with associated ecosystem services and cultural values. SOURCE: World 
Database Protected Area 
 
Figure 1: Tiger seizures in India (2000-2012, n=336 




