


 

  

 
       

   

 

 
 

  
   

 

  
 

 
   

 

 

  
 

Population structure and relatedness 

We take as a starting point that, for example, the match probability for a homozygous profile 
AA at a single autosomal locus is [3θ + (1 − θ)pA][2θ + (1 − θ)pA]/[(1 + θ)(1 + 2θ)] (Balding 
and Nichols, 1994) and for Y-STR allele A is [θ + (1 − θ)pA] (e.g. Buckleton et al., 2011). 
For autosomal profiles, it is customary to multiply the resulting match probabilities over loci 
and for Y-STR profiles to use a multi-locus value of θ. There is some empirical support for 
these approaches (e.g. autosomal: Weir, 2004; Y-STR: Hall, 2016). Given the increasing 
number of CODIS loci, the use of highly-mutable Y-STR loci and the introduction of NGS 
variants, we believe it prudent to re-examine this issue, not to undermine current procedures 
but to strengthen future practice. 

As background, we display in Figure 1 estimated θ values, using different numbers of 
loci, and shown on a − log10 scale, for published PPY23 data (Purps et al., 2014). For each 
of the n!/[(n − x)!x!] subsets of x of the n loci available, we estimated θ using the methods 
of Buckleton et al. (2016). There is clear evidence that these estimates are neither constant 
over the number of loci, nor are they products of single-locus estimates. The dependence of 
θ on the number of loci is complex, and so is the match probability for a Y-STR profile. 

Figure 1: Plot of estimated multi-locus θ, on − log10 scale, against the number of loci, for PPY23 
data. 

The complexities for Y-STR profiles, depending in part on the lack of recombination 
among Y-STR loci, has been widely recognized and has led to work of the sort described 
below. The dependence among single-locus match probabilities for autosomal loci has also 
been recognized for a long time. In the forensic context, Donnelly (1995) said: “after the 
observation of matches at some loci, it is relatively much more likely that the individuals 
involved are related”. He provided some theoretical expressions for the degree of depen- 
dence. Laurie and Weir (2003) provided both theoretical and empirical demonstrations of 
dependence, and referred to earlier theory by Cockerham and Weir (1973): “For finite popu-
lations, between-locus dependencies can exist even for unlinked loci”. A completely empirical 
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demonstration was given by Weir (2004): “As the number of loci increases, the proportion 
of cases [sets of loci chosen from a set of nine loci] in which the product rule estimate of the 
multi-locus number of matches is less than the observed number are: 12/36=0.33 for two 
loci, 42/84=0.50 for three loci, 88/126=0.70 for four loci and 92/126=0.73 for five loci.” At 
that time we discounted the problem by stating that “under-estimating matching probabil- 
ities is prevented by using the products over loci of the match probabilities with θ greater 
than zero.” Donnelly was concerned with family resemblance, whereas Laurie and Weir were 
concerned with dependence resulting from finite population size and evolutionary history, 
as were Balding and Nichols (1994). Evolutionary-dependencies will be much smaller than 
family-dependencies and we seek to place bounds on them for current data. 

Recent advances suggest we revisit the issue: there are now more loci being used in 
forensic science (Hares, 2015). Although the CODIS additional loci were chosen from among 
those with (relatively) low mutation rate, the CODIS loci generally do have mutation rates 
of the order of 10−3. As Laurie and Weir (2003) showed: “the dependency effects increase 
as the mutation rate increases . . . the between-locus dependency effects are magnified when 
considering more loci.” 

Lineage markers 

The lack of recombination among Y-STR loci argues for them not being independent. Judi- 
cious choice of loci can reduce dependencies, reflecting the independence of mutation events 
at different loci. Hall (2016) showed that, among all pairs of Y-STR loci in the three 
databases she examined, most pairs did not show significant linkage disequilibrium. In Ta- 
ble 1 we show the most diverse of PPY23 loci, ordered by their single-locus entropies, the 
conditional entropy of each locus when added in the order shown, and the resulting final 
entropy. For a haplotype A with alternative forms Au having sample frequencies p̃ u ,  the 

entropy is − 
L 

u p˜u ln(p̃u ). This is a useful measure of diversity for the set of loci represented 
in the haplotype, although it differs from the sample average match probability 

L 
u p̃u 

2 and 
does not solve the forensic issues (Caliebe et al., 2015). Nevertheless, Table 1 shows the 
diminishing benefits of adding additional Y-STR loci: there is little change in combined 
entropy beyond 10 loci (read across columns for each row.) 

Table 1: Entropy measures for Y-STR markers. 
Added Entropy Added Entropy 
Marker Single Combined Conditional Marker Single Combined Conditional 
YS385ab 4.750 4.750 4.750 DYS481 2.962 6.972 2.222 
DYS570 2.554 8.447 1.474 DYS576 2.493 9.318 0.871 
DYS458 2.220 9.741 0.423 DYS389II 2.329 9.906 0.165 
DYS549 1.719 9.999 0.093 DYS635 2.136 10.05 0.053 
DYS19 2.112 10.08 0.028 DYS439 1.637 10.10 0.024 
DYS533 1.433 10.11 0.010 DYS456 1.691 10.12 0.006 
GATAH4 1.512 10.12 0.005 DYS393 1.654 10.13 0.003 
DYS448 1.858 10.13 0.002 DYS643 2.456 10.13 0.002 
DYS390 1.844 10.13 0.002 DYS391 1.058 10.13 0.002 
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NGS Data 

“Massively parallel sequencing (MPS) is adding a new dimension to the field of forensic 
genetics, providing distinct advantages over CE [capillary electrophoresis] systems in terms 
of captured information, multiplex sizes, and analyzing highly degraded samples. In recent 
years, MPS has been applied to the generation of STR sequence data with the general out-
come that STRs can be successfully typed producing genotypes compatible with those of 
CE analyses, even from compromised forensic samples. Furthermore, MPS derived STR 
genotypes provide additional information to that generated by CE separation by capturing 
the full nucleotide sequence underlying the repeat units and nearby flanking regions. It was 
demonstrated by earlier studies using mass spectrometric (MS) systems that the discrimina- 
tion power of STR typing could be increased by differentiating the nucleotide sequences of 
alleles with identical size. With MPS, forensic tests will further discern STR variants that 
cannot be distinguished by MS, e.g. repeat motifs that are shifted relative to each other in 
the repeat region. Early assessments of MPS STR typing show it will be highly beneficial to 
routine casework by increasing the discrimination power, improving resolution of mixtures, 
and enhancing the identification of stutter peaks and artifacts.” (Parson et al., 2016) 

Parson’s listing of the many advantages of NGS data did not include the possibility of 
including single nucleotide polymorphism (SNP) markers in typing kits to provide additional 
information on phenotype and/or ancestry (e.g. Illumina ForenSeq, Promega PowerSeq 
kits). We will not consider here the considerable potential of large-scale SNP array data for 
phenotypes such as face morphology (http://parabon-nanolab.com). 

The key finding has been the ability to infer the underlying STR genotypes when STR 
loci are sequenced. The STRait Razor software (Warshauer et al., 2015) has proven useful 
in this regard. We have begun an investigation of how this approach may be enhanced in 
terms of quality and speed. We have used C++ with an R-wrapper rather than Perl used by 
STRait Razor. We also modified the method of scoring the alignments between STR-region 
sequence data and reference sequences for STR alleles. 

Project Design and Execution 

Population Structure and Relatedness 

We have developed a new approach to estimating θ from published STR allele frequencies 
and we applied that method to a worldwide survey we extracted from 250 publications 
(Buckleton et al., 2016). Although our findings were broadly consistent with those of other 
authors, we did suggest that somewhat-larger values be used than has been the practice. In 
Table 2 we summarize some of our results. There is considerable variation of estimates over 
loci. Averaging over loci shows the smallest θ (0.0038) is for the set of African populations 
- the most diverse of human populations. The largest value (0.1050) is for the small number 
of quite homogeneous Inuit populations. We stressed that estimates depend on the reference 
set of populations: in Table 2 the reference is the entire set of 446 populations in the survey. 

The estimates we show were values of FST calculated as ( M̃ W − M̃ B )(1 − M̃ B )  and is 
the appropriate quantity to use for θ when allele frequencies are taken from a database 
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representing all populations in the reference set. The estimate uses two sample proportions 
of matching pairs of alleles: M̃ W within populations and M̃ B between pairs of populations.

For the set of African populations, the average within-population matching proportion 
was M̃ W = 0.1884 and the average between-population-pair averages were M̃ B = 0.1691 
within the African region and M̃ B = 0.1726 for all pairs of populations. There is a larger 
FST for the set of African populations (βˆW = 0.0082) with Africa as a reference set than there 
is (βˆW = 0.0038) with the world as a reference set. The opposite was found for a collection 
of Inuit populations: the average within-population matching proportion was M̃ W = 0.4379 
whereas the average between-population-pair matching proportions were M̃ B = 0.1726 for 
pairs within the Inuit group and M̃ B = 0.0090 for all pairs in the study: so FST is less with 
Inuit as a reference set (βˆW = 0.0205) than with the world as a reference set (βˆW = 0.1050). 

Table 2 θ estimates from world-wide survey. 

Africa AusAb Asian Caucn Hisp IndPk NatAm Inuit Polyn World 
CSF1PO -0.0668 0.0130 0.0154 0.0127 0.0165 0.0197 0.0616 0.0406 0.0291 0.0117 
D1S1656 0.0339 —— 0.0658 -0.0018 0.0189 0.0316 —— 0.0812 —— 0.0157 
D2S441 0.0153 —— 0.0265 0.0316 0.1005 -0.0285 —— 0.1625 —— 0.0332 
D2S1338 0.0029 0.0313 0.0319 0.0129 0.0234 0.0134 0.1210 0.1255 0.0035 0.0292 
D3S1358 0.0145 0.0279 0.0578 -0.0345 0.0239 0.0227 0.2200 0.2196 0.0426 0.0254 
D5S818 0.0102 -0.0229 -0.0132 0.0465 0.0474 0.0197 0.1192 0.0461 -0.0243 0.0337 
D6S1043 -0.0006 —— 0.0126 0.0669 0.0030 —— —— —— —— 0.0233 
D7S820 0.0244 0.0557 0.0345 0.0001 0.0165 0.0039 0.0842 0.0443 -0.0078 0.0222 
D8S1179 0.0405 -0.0153 -0.0187 0.0169 0.0273 -0.0207 0.0885 0.1264 0.0227 0.0179 
D10S1248 -0.0397 —— 0.0383 0.0047 0.0473 -0.0195 —— 0.1345 —— 0.0102 
D12S391 0.0317 —— 0.0448 -0.0097 0.0745 0.0258 —— 0.0522 —— 0.0120 
D13S317 0.1221 0.0806 0.0235 0.0445 0.0051 0.0093 0.0252 0.0990 0.0375 0.0384 
D16S539 -0.0018 0.0597 0.0237 0.0288 0.0093 -0.0025 0.0720 0.1635 0.0227 0.0250 
D18S51 -0.0012 0.0064 0.0345 0.0064 0.0026 0.0323 0.0503 0.0733 0.0538 0.0181 
D19S433 -0.0095 0.1661 0.0226 0.0410 0.0053 0.0166 0.0132 -0.0013 0.0015 0.0254 
D21S11 -0.0076 -0.0225 0.0422 0.0084 0.0126 0.0013 0.0702 0.0492 0.0393 0.0200 
D22S1045 -0.0626 —— -0.0078 0.0300 0.0872 -0.0211 —— 0.0836 —— 0.0204 
FGA 0.0027 0.0038 0.0183 0.0164 0.0011 0.0072 0.0226 0.0296 0.0655 0.0142 
PENTAD -0.0402 —— 0.0567 0.0180 0.0015 0.0160 0.0380 —— —— 0.0227 
PENTAE 0.0185 —— 0.0163 0.0235 0.0136 0.0137 0.0409 —— —— 0.0202 
SE33 0.0234 —— 0.0138 0.0205 0.0152 0.0041 —— 0.1081 —— 0.0219 
TH01 0.0731 0.0679 0.1465 0.0189 0.0369 0.0199 0.2084 0.5200 0.0464 0.0755 
TPOX -0.1336 -0.0031 0.0911 0.0578 0.0064 -0.0369 0.0736 0.0395 0.0412 0.0339 
VWA -0.0021 0.0246 0.0195 0.0087 0.0373 0.0055 0.0808 0.0231 0.0213 0.0198 
All loci 0.0038 0.0328 0.0328 0.0193 0.0258 0.0065 0.0804 0.1050 0.0265 0.0244 

We have recently shown that our population-structure estimates can be used to estimate 
kinship or coancestry coefficients between pairs of individuals. In essence, each individual is 
regarded as its own population and our population-level θ estimates give kinship estimates 
by reducing sample sizes to one individual/two alleles per population. It is more common 
to write estimates in terms of allele dosages: if individual j has Xju copies of allele u at a 

5 



 

  

  

 

    
 

    

    

   

 

 
  

   
 

 
 

  
     

    
 

   
 
 
 
 
 
 
 
 
 
 

 

 

 

 
 

 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 

 

locus the estimated kinship for individuals j, jl is written as β̂ j j  l : 

M̃jjl −M̃ B 
β l =ˆi

jj 1 − M̃ 
B 

L Ln Ln˜where M̃ j j  l = u XjuXjlu/4 and MB = M̃ j j  l /n(n − 1) for individuals in a j=1 jl=1,jlI=j

sample of n individuals.  For multiple loci, the numerator and denominator are summed 
separately over loci. These estimates behave much better than standard estimates (Ritland, 
1996; Yang et al., 2011): 

(Xju − 2p̃u)(Xjl u − 2p̃u )
θˆjjl = 

4pũ  (1 − pu ˜ ) 

where p˜u is the sample allele frequency for the set of n individuals in a database. 

$ 

β 

% 

Figure 2. Comparison of new and standard kinship estimates. 
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In Figure 2 we compare our new estimates with the standard ones for a set of SNP data. 
The true values were i/32, i = 0, 1, . . . 10 and our estimates were clustered around these 
values (they are all relative to the average over all kinship values for pairs of individuals 
in the study). Kinship estimation has not been possible with only 20 or so STR loci, but 
with the coming addition of SNP data we can expect forensic scientists to have the ability 
to provide meaningful estimates and we will advocate the use of our new procedure, which 
holds for both STRs and SNPs. 

To estimate multi-locus θ values we need allele-pair-matching proportions for all loci. 
This is not feasible for 20 or more loci in databases of only a few thousand profiles, and even 
the plot we showed in Figure 1 suffers from having only one set of 23 loci – no indication 
is given in that plot of the sampling variation for the right-most value. We will explore the 
application of the theoretical work of Donnelly (1995) but we are more optimistic about the 
use of simulation. It is straightforward to set up forward simulations for realistic population 
sizes under the assumptions of random mating and discrete generations. We can model 
either autosomal or Y-chromosome STR loci with stepwise mutation, SNP markers with 
infinite-alleles mutation, or a combination of both. We can keep track of actual identity-by- 
descent to produce actual multi-locus θ values. As an illustration, in Table 3 we show joint 
autosomal and Y-STR θ values, for a single STR locus and 20 Y-STR loci. The mutation 
rate was the same at all loci. The joint coancestry θAY is the probability that a pair of 
autosomal alleles, one from each of two men, is identical by descent at the same time as their 
Y profiles are identical by descent. There are two conditional coancestries: autosomal given 
Y, θA|Y = θAY /θY and Y given autosomal, θY |A = θAY /θA. This work was motivated by that 
of Walsh et al. (2006) and it continues our own recent work (Buckleton and Myers, 2014). 

Table 3: Predicted autosomal and Y-STR θ values. 
N µ θY θY |A θA θA|Y 

104 10−3 0.00244 0.00370 0.01233 0.01868 
10−4 0.02434 0.02447 0.11110 0.11168 

105 10−3 0.00024 0.00151 0.00125 0.00768 
10−4 0.00249 0.00262 0.01234 0.01300 

106 10−3 0.00002 0.00129 0.00012 0.00656 
10−4 0.00025 0.00038 0.00125 0.00191 

It is profile match probabilities, rather than θ values, that are of forensic relevance. 
For moderate numbers of loci we can compare empirical matching proportions with those 
predicted by a combination of haplotype frequencies and θ values. For autosomal profiles we 
expect to be able to use the Balding-Nichols approach with A representing a gamete (one 
allele per locus) and summing over pairs of gametes consistent with the profile of interest. 
For larger numbers of loci, and rare profiles, we will investigate the use of θ as a default value 
for any rare profile and (combinations of) 6θ2/[(1 + θ)(1 + 2θ)] for autosomal homozygotes 
and 2θ2/[(1+θ)(1+2θ)] for autosomal heterozygotes. The combinatorial issues are analogous 
to those discussed in the next section for lineage profiles. This use of the same value for all 
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profiles with the same number of loci is consistent with the approach of Brenner (2010, 2014) 
but our value does depend on the number of loci, and accommodates population structure 
(Buckleton et al., 2016). The advantage is the avoidance of the assumption of independence 
of loci. 

Lineage Markers 

Y chromosome STR typing is often used when autosomal typing has failed. As such it often 
presents mixed and low template profiles. 

Consider a two person mixed profile at 21 loci. Each locus will show 0,1,2 peaks de-
pending on masking and drop-out. There may be additional peaks from drop-in. Without 
consideration of drop-out and drop-in every locus showing two peaks results in two possible 
combinations of haplotypes. If there are 21 of these this is 221 = 2, 097, 152. Consideration 
of drop-out and drop-in greatly increased this number. 

Because of the high diversity of the Y chromosome, databases of realistic size are poor at 
informing haplotype probabilities. Many of the haplotype pairs mentioned above will have 
one or both haplotypes unrepresented in the database and hence return a sample estimate of 
zero. Haplotype frequencies in databases are affected by population substructure, reflecting 
the fact that they are genetic entities with frequencies shaped by evolution. 

The SWGDAM Y chromosome working group has highlighted the need for strong in- 
terpretation tools for such mixtures. Exploratory work in this area has highlighted the 
following: 

1. The need for a computationally efficient and foundationally valid method for informing 
haplotype probabilities for haplotypes observed rarely or not at all in a database, and 

2. The probable need for use of MCMC and importance sampling methods to give realistic 
run times for casework mixture interpretation. 

As previously noted, the space of possibilities for haplotype sets – sets of haplotypes 
corresponding to one or more contributors – can be extra-ordinarily large. This means 
that mixture interpretation, which involves summation over all possibilities will typically be 
impossible to carry out in finite time. A traditional statistical approach to such problems is 
to employ sampling methods. That is, we sample a large, but finite, subset of the haplotype 
sets with replacement, evaluate the probability of the evidence with respect to each of these 
sets and average. If we are using autosomal markers, then sampling genotype sets with 
probability proportional to the frequency of the alleles present at each locus, on a per-locus 
basis works reasonably well. This is because the space of genotype sets at a single locus is 
relatively small, and therefore simple random sampling will cover most of the possibilities. 
However, the same cannot be said when we consider haplotype sets. The inability to treat 
loci as independent means we would have to consider whole haplotypes rather than locus 
specific haplotypes. The resulting estimates, although unbiased, would have remarkably 
poor precision. Important sampling and MCMC based methodology offer us two potential 
solutions. 

Importance sampling is a relatively simple idea. Imagine that we want to sample from a 
probability distribution with probability (density) function f(x), but we are only interested 
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in a subset of the outcomes for which f(x) is defined, and these outcomes have very low 
probability. Importance sampling proceeds by considering an importance density, say h(x), 
which assigns much higher probability to the outcomes of interest. If we sample from h(x), 
then we will see many more instances of the outcomes we are interested in than if we sampled 
from f(x). To counter this over-sampling we simply re-weight the observations we sample by 
the ratio of f(x) to h(x). This is the essence of importance sampling. It biases the sampling 
towards the outcome(s) of interest, and then re-weights the sample. Estimators based on the 
resulting sample will be unbiased and generally have smaller precision than a simple random 
sample. This means that, for an equivalent sized sample, the importance sample estimate of 
the probability of the evidence given the haplotype sets will generally be considerably more 
accurate than that obtained through simple random sampling. 

Monte Carlo Markov Chain based methods are another approach to estimation in spaces 
with many many outcomes. In order to make this relevant, we describe here how we envisage 
this method working for this problem. Again we start with the idea that the space of 
haplotype sets is huge. We need to estimate: 

rL IT
Pr(E|H)  = Pr(Ri|s) Pr(s) 

s∈S i=1 

where Ri is the ith repeat measurement (PCR analysis) of the evidential stain, and s is 
a particular haplotype set in the space of haplotype sets S. We are unable to sum over 
all possible value of s, but we might be able to approximate this sum by choosing a ran-
dom sample of sets that covers those possibilities which explain the evidence well, and not 
spending much time dealing with possibilities that do not. A potential method would be to 
propose a particular haplotype set, s0 at random (perhaps with uniform probability). We 
then evaluate 

rIT 
L0 = Pr(Ri|s0) Pr(s0) 

i=1 

We then propose N , where N is large, alternative sets. At each proposal we randomly select 
s1, and evaluate 

rIT 
L1 = Pr(Ri|s1) Pr(s1) 

i=1 

If L1 is larger than L0 or, a random value u ∼ U [0, 1] is less than 

min(1, L1/L0) 

then we store s1 and L1, set s0 = s1 and L0 = L1 otherwise we store s0, L0. For a large 
enough value of N , the average over all stored values of L should approximate the probability 
of interest, i.e. 

1 L
N 

IT
r 

Pr(E|H) ≈ Pr(R |s )
N i l 

I=1 i=1 

The idea in proposing a new haplotype set is to choose one that is reasonably similar to the 
one under consideration. For example we might alter the alleles observed at just one locus. 
This produces correlated samples (and hence we need to take a large sample to deal with 
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the inefficiency of the estimator), but it also means that we spend more time considering 
haplotype sets that are more probable (i.e. good explanations for the evidence), than we 
would if we used simple random sampling. 

We propose to continue our use of these techniques as we consider Y-STR mixtures. Such 
an approach will not be very precise because of the sheer size of the space. However, both 
importance sampling and MCMC are strategies which have some promise here, and require 
some investigation. We have extensive experience in the implementation of such approaches 
as Curran wrote the first commercial program, LoComatioN, that implemented the semi-
continuous model for the United Kingdom’s Forensic Science in 2004/2005. We have other 
experience with MCMC methodology used in the STRMix package. 

We have previously (Buckleton et al., 2011) reviewed the various counting and κ (Brenner, 
2010, 2014) methods for estimating haplotype profile or match probabilities. We can also 
mention the Good method and the Discrete-Laplace method. The Generalized Good method 
(hereafter the Good method) is based on work by Good (1953). This method calculates a 
likelihood ratio (LR) rather than a haplotype probability or a match probability. A derivation 
of the LR for the Good method was given by Cereda (2015). Considering two matching 
haplotypes (one evidential and one reference from the defendant) the propositions of the LR 
are: 

Hp: The defendant left the crime stain. 
Hd: Someone other than the defendant left the crime stain. 

If the haplotype is unobserved, then the probability of the evidence under Hp is the prob-
ability of observing a singleton. If the database, augmented by he evidence profile, has ns 

singletons we have Pr(E|Hp) = ns/n. Under Hd, the probability of the evidence is the 
probability of observing a matching pair (nd) out of all possible pairwise comparisons is 
Pr(E|Hd) = 2nd/n(n − 1). The rare haplotype LR is therefore: 

(n − 1)ns ≈ 
nns

LR = 
2nd 2nd 

Following a similar rationale, for haplotypes that have been observed x times in the database, 
the LR is: 

(n − x − 1)ns+1 nnx+1
LR = ≈ 

(x + 2)2ns+2 (x + 2)nx+2 

where nx+1 is the number of groups of matching haplotypes of size (x+1) within the database. 
Note that by setting x = 0 the LR simplifies to the rare haplotype LR. 

The discrete Laplace method (Anderson et al., 2013) also uses the idea of changes in 
genetic diversity over time through mutation to describe modern populations. The method 
starts with the idea that there were one (or more) ancestral haplotypes, and through mutation 
we have arrived at the distribution of haplotypes we observe currently. The method makes 
three assumptions: 

1. A population of haplotypes is composed of clades of haplotypes, 

2. Each clade has arisen from one ancestral haplotype by stepwise mutation, 
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3. Mutations occur independently of each other. 

It is possible, given these assumptions, to multiply probabilities of allele differences from 
a central haplotype across loci within the haplotype clade to assign a probability to a full 
haplotype in that clade. Hence, given the clade (or within the clade), the loci are assumed 
to be independent. The probability of the haplotype in the full population is assigned by 
weighting the assignment from each clade by the estimated contribution of that clade to the 
total population. The method takes its name from the discrete Laplace distribution which 
is used to calculate the haplotype probabilities. The Discrete Laplace method has great 
advantage in that it can work on a per-locus basis. It requires moderate computational effort 
initially, to compute the distribution parameters, but after this has been done, computation 
in a specific case is substantially lower. 

We are also considering a method we term The Approximate Product Method (APM). 
This attempts to model the dependency between loci through the continued application of 
an approximate correction. We start with a problem involving a single haplotype described 
by alleles at just two loci. If we treat these loci as being completely independent, then the 
haplotype probability is given by Pr(x1) Pr(x2) where x1 and x2 are the alleles at the two 
loci. Similarly if we regard these loci as being completely dependent, then the haplotype 
probability is given by Pr(x1, x2) = Pr(x1). If we write α for the probability that these two 
loci are dependent, then using the law of total probability we can express the haplotype 
probability as 

Pr(x1, x2) = (1 − α) Pr(x1) Pr(x2) + α Pr(x1) = Pr(x1)[α2|1 + (1 − α2|1) Pr(x2)] 

to define α2|1. This allows us to write Pr(x2|x1) = α2|1 + (1 − α2|1) Pr(x2). For three loci, by 
extension, 

Pr(x3|x1, x2) = α3|1,2 + (1 − α3|1,2) Pr(x3) 

If we proceeded in this fashion for all loci, then we would end with many α terms and a 
significant estimation problem. To manage the number of terms we posit that there is some 
single value of α that will allow the estimation process across all loci to perform credibly. In 
other words, for an L-locus haplotype 

IT 
Pr(x1, x2, . . . xL) = 

L 

{1 − (1 − α)l−1[1 − Pr(xl)]}
l=1 

The motivation for this approximate method is that it allows calculation of haplotype prob- 
abilities on a per-locus basis, and it has a very simple computational form. It is admittedly 
ad-hoc but we plan to evaluate it through simulation. 

These various methods/models range from using naive to complex population genetics. 
However, there is no agreement in the forensic community about which best quantifies the 
evidence of matching Y-STR profiles and some further evaluation seems worthwhile. 

Further, we plan to investigate the application of Chow-Liu trees (Chow and Liu, 1968) 
for the estimation of Y-STR haplotype frequencies. Chow-Liu trees attempt to reconstruct or 
approximate, a discrete multivariate probability function, The Chow-Liu method describes 
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a joint probability distribution as a product of second-order conditional and marginal distri- 
butions. For example, the six-dimensional distribution might be approximated as 

Pr(X1, X2, X3, X4, X5, X6) = Pr(X6|X5) Pr(X5|X2) Pr(X4|X2) Pr(X3|X2) Pr(X2|X1) Pr(X1) 

where each new term in the product introduces just one new variable, and the product can 
be represented as a first-order dependency tree, as shown in Figure 3. 

This kind of factorization exists in the field of Bayesian Networks. Chow and Liu (1968) 
provide a simple algorithm for constructing the optimal tree. At each stage of the procedure 
the algorithm simply adds the maximum mutual information pair to the tree, where mutual 
information between a pair of random variables is given by 

( ' 
L L Pr(x, y)

I(X, Y ) = Pr(x, y) log 
x in X y in Y Pr(x) Pr(y) 

The Chow and Liu algorithm gives an approximation which is the minimum Kullback-Leibler 
distance from the true distribution. 
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Figure 3: Example of Chow-Liu Tree. 

Y-mixture models. There is a great need in the forensic community for statistical soft- 
ware that helps with the interpretation of mixed Y-haplotypes. Initially we plan to apply 
semi-continuous interpretation methods to Y-STR mixtures and later move to fully contin- 
uous mixtures. Gill et al. (2000), and Balding and Buckleton (2009) proposed a model for 
autosomal DNA profiles which indirectly accounted for peak height information by the inclu- 
sion of terms that modeled the phenomena of DNA dropout, and drop-in (contamination). 
We call these models semi-continuous because they weight each putative genotype by a prob- 
ability term between 0 and 1. For example, if we observed alleles 11,12,13 in a crime scene 
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sample and we thought that these originated from two contributors with genotypes 11,12 
and 13,14 respectively then we would weight the probability of the respective genotypes by 
an additional term 

Pr(R|Gi) = Pr(11, 12, 13|11, 12, 13, 14) = Pr(D̄ )3 Pr(D) Pr(C̄ ) 

This equation models the idea that the alleles 11, 12, 13 have all not dropped out with prob-
ability Pr (D̄ )3 , the 14 allele from the second contributor has dropped out with probability 
Pr(D), and there are no drop-in alleles which occurs with probability Pr(C̄ ). These methods 
are useful because they explicitly model stochastic phenomena we know exist in every PCR 
reaction. A fully continuous model takes its name from the fact that it both assigns a prob- 
ability to each putative genotype set considered, and that this weight is calculated directly 
from height information taken from the electropherogram (epg). The heights of peaks at 
allelic positions in the epg are thought to be proportional to the amount of genetic mate- 
rial contributed to the stain by each donor. Modeling this information directly rather than 
making arbitrary calls of drop-in, drop-out, or stutter is inherently appealing to all forensic 
geneticists because it potentially removes one or more source variability, namely that from 
analysts, from the interpretation process. Neither model has been successfully implemented 
for Y-STR case work. 

The rate-limiting step for using such models (or more complex models), is primarily, that 
the haplotypes cannot be considered locus by locus, because the loci are not independent. 
This means that we have to consider whole haplotypes at once. Complete enumeration of 
all haplotypic combinations may be possible in simple situations but grows combinatorially 
with the addition of multiple contributors and multiple unknowns. Consider a simple case in 
which we consider a crime scene stain which appears to be a mixture of two individuals. It 
is alleged by the prosecution that two individuals identified by a complainant, and who have 
haplotypes which could explain the crime scene stain, are the only contributors to this stain. 
The defense argue that it is two random individuals. To consider all possible haplotypes 
across 20 or more loci would require evaluation over billions of combinations in the order 
of 1010. Such a problem is not currently computationally feasible, and equally, it may not 
make sense to consider all possible haplotypes because different haplotypes do not arise 
from random recombinations of alleles. They arise because of mutation events. To make this 
problem tractable we need to consider efficient schemes for touring the haplotype combination 
space. Two methods that might offer some way forward are importance sampling and Markov 
Chain Monte Carlo as described above. 

NGS Data 

In the early 90s the US forensic community engaged in what was described as the DNA 
wars. These debated what population genetics assumptions were appropriate for assigning 
DNA match probabilities. The large number of genotypes present at each STR locus makes 
testing for Hardy-Weinberg and linkage equilibrium difficult. An improvement in testing 
such models came with our realization (Weir, 2004) that the numbers of fully mathcing and 
partially matching profiles in databases can be used to assess the performance of population 
genetic models. This was undertaken by counting the number of various classes of fully 
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or partially matching profiles. These observed counts were compared with those expected 
under various models. Generally conservative behavior of the models was noted. 

With NGS data two new challenges will emerge. First, NGS provides many more geno- 
types, meaning that genotype arrays even larger and more sparsely populated. Second, up 
to half of the new diversity is in the flanking regions. These variants have a lower mutation 
rate and, consequently, different θ values. Countering these issues, however, is the promise 
of improved mixture interpretation. 

Modern interpretation strategies require an understanding of the behavior of allele and 
stutter peak heights. Peak height translates in the NGS setting into read counts. Appropriate 
models require the expectation and variance about that expectation. For CE data the 
expectation has been modeled using degradation, template, locus effects and stutter. The 
variation is modeled as inversely proportional to the template. Current NGS protocols loosen 
the relationship between template and signal (read counts) and this seriously challenges 
current models. 

The maintenance of a relationship between template and signal is important for the inter- 
pretation of DNA mixtures. Qualitative work suggests that relative template at each locus 
within a sample retains a relationship to relative signal at each locus. However, between- 
locus relationships and relationship to absolute values for template are adversely affected. 
The first step that we discuss in this regard is the library preparation stage. At this stage a 
library is built from various amplifications of DNA extracted from samples. These various 
amplifications are quantified and a target DNA amount is carried forward into the library. 
This has the effect that high template or low template (as judged at extraction) and now 
normalized to similar values. Hence the models based on low relative variance for high 
template and low relative variance for high template (Bright et al., 2013) are likely to be 
challenged. The other factor suspected of influencing the relationship between template and 
signal is purification. Most protocols currently use beads for the purification stage. These 
beads have an optional molecular weight (say 200bp) that adheres to them. Amplicons near 
to 200bp are preferentially enriched. This is likely to superimpose a distribution of unknown 
form but potentially normal centered on 200 on top of the normal exponential degradation 
curve. The outcome is not yet investigated quantitatively. 

If we lose or loosen the relationship between signal and template, existing models will be 
inappropriate. A parallel consequence is that the value of any shift to sequencing for mixtures 
now represents a gain from the extra discrimination and a loss due to less information from 
signal strength. This is an important matter to quantify.  

 is exploring changes to the protocols to restore 
this relationship and we are in discussions with him. 

The current model for STR stutter ratio suggests that stutter is proportional to the sum 
of the maximum of each sequence length in the STR less a lag and zero. This model has 
an intuitive molecular biological interpretation. The polymerase enzyme does not start to 
stutter until after a number of uninterrupted repeats. For the NGS situation we will test 
the suitability of this model and to test whether the changes to the protocols have restored 
the relationship between template and signal. 

In addition we can apply a new test to the model. Consider for example one of the variants 
of the 20.2 allele at SE33: [AAAG]2 AG [AAAG]3 AG [AAAG]11 AA AAAG [AAAG]8 G 
AAGG [AAAG]2 AG. The lag for SE33 is thought to be about 5. Hence the sequences of 
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